Aplikasi Filtering of Spam Email Menggunakan Naïve Bayes

IJCIT - Indonesian Journal on Computer and Information Technology

View Publication Info
 
 
Field Value
 
Title Aplikasi Filtering of Spam Email Menggunakan Naïve Bayes
 
Creator Hayuningtyas, Ratih Yulia
 
Subject
 
Description AbstrakEmail merupakan alat yang penting digunakan untuk berkomunikasi, mentransfer file serta digunakan untuk media iklan melalui internet. Penggunaan email semakin meningkat maka banyak pihak lain yang mengirimkan email dengan pesan yang berisikan virus, penipuan, iklan dan pornografi. Email ini disebut dengan spam email atau email yang tidak diiginkan oleh penerima yang dikirim secara masal. Banyak pengguna merasa terganggu karena banyaknya waktu yang dihabiskan untuk menghapus pesan spam, biaya yang harus dikeluarkan dan besarnya bandwith jaringan yang digunakan. Untuk mengatasi masalah ini, perlu metode klasifikasi untuk membedakan antara spam dan non spam. Metode klasifikasi yang digunakan adalah Naïve Bayes merupakan metode penyaringan yang paling popular. Evaluasi menggunakan confusion matrix yang menghasilkan akurasi sebesar 75,9%.Kata Kunci: email, spam, naive bayes AbstractEmail is an important entity that used for digital communication in the internet, it is used to transfer information in the form of file and be used for media advertising. Increasing users email many parties to bombard multiple emails with unsolicited message that contain the promotion of product or service, pornography, viruses and that are not important. This email is called spam email message or email that are unwanted by the recipient an sent in bulk. Many users troubled by spam, such as the time wasted by useless to remove spam, the amount of network bandwidth that used, the costs to be incurred to remove spam and spent the space provided by the server. To solve this problem, need a method of classification to distinguish between spam and non spam. Classification method used is Naïve Bayes is a method of filtering the most popular. Evaluation by confusion matrix that generates 75,9% accuracy.Keywords: email, spam, naïve bayes
 
Publisher LPPM Universitas Bina Sarana Informatika
 
Contributor
 
Date 2017-05-29
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artikel yang dipeer-review
 
Format application/pdf
 
Identifier https://ejournal.bsi.ac.id/ejurnal/index.php/ijcit/article/view/1914
10.31294/ijcit.v2i1.1914
 
Source IJCIT; Vol 2, No 1 (2017): Indonesian Journal on Computer and Information Technology
IJCIT (Indonesian Journal on Computer and Information Technology); Vol 2, No 1 (2017): Indonesian Journal on Computer and Information Technology
2549-7421
2527-449X
10.31294/ijcit.v2i1
 
Language ind
 
Relation https://ejournal.bsi.ac.id/ejurnal/index.php/ijcit/article/view/1914/1421
 
Rights ##submission.copyrightStatement##
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library