Statistical control charts to assess the incidence of presumably infectious diarrhea reported between 2009 and 2019 in children under 4 years of age in the macro regions of Araçatuba, Marília and Presidente Prudente, São Paulo, Brazil.

Población y Salud en Mesoamérica

View Publication Info
 
 
Field Value
 
Title Statistical control charts to assess the incidence of presumably infectious diarrhea reported between 2009 and 2019 in children under 4 years of age in the macro regions of Araçatuba, Marília and Presidente Prudente, São Paulo, Brazil.
Gráficos de control estadístico para evaluar la incidencia de diarrea presumiblemente infecciosa notificada entre 2009 y 2019 en niños menores de 4 años en las macro regiones de Araçatuba, Marília y Presidente Prudente, São Paulo, Brasil.
 
Creator Navas-Úbida, Suelen
Giuffrida, Rogério
 
Subject diarrheal diseases
sanitation
children
temporal analysis
enfermedades diarreicas
saneamiento
ninõs
análisis temporal
 
Description Objective: To evaluate the monthly rates of hospitalizations for childhood diarrhea in macro-regions of Araçatuba, Marília and Presidente Prudente, SP, between 2019 -June Between June 2009. Methods: The average rates and their standard deviations for admission of diarrhea in the target population were obtained from DATASUS and standardized for cases x 100,000 inhabitants. Confidence limits were established, occurrences above confidence limits were considered epidemic events. The normality of the data and serial autocorrelation were tested using the Shapiro-Wilk and Durbin-Watson method. Results: All methods detected epidemic occurrences in the three regions. Araçatuba and Marília, the peaks were concentrated in the first half of the decade and Presidente Prudente, close to the middle. The CUSUM method was more sensitive to detect epidemic periods, however the normality data and assumptions have been violated by serial autocorrelation in a few months. The EWMA method was considered the most appropriate. Conclusions: Statistical process control charts can be used to monitor and compare disease incidence between different regions.
Objetivo: evaluar las tasas mensuales de hospitalizaciones por diarrea infantil en las macrorregiones de Araçatuba, Marília y Presidente Prudente, SP, entre entre Junio 2009 -Junio 2019. Métodos: Las tasas medias y sus desviaciones estándar de ingreso de diarrea en la población diana se obtuvieron de DATASUS y se estandarizaron para casos x 100.000 habitantes. Se establecieron límites de confianza, las ocurrencias por encima de los límites de confianza se consideraron eventos epidémicos. La normalidad de los datos y la autocorrelación en serie se probaron utilizando el método de Shapiro-Wilk y Durbin-Watson. Resultados: Todos los métodos detectaron ocurrencias epidémicas en las tres regiones. Araçatuba y Marília, los picos se concentraron en la primera mitad de la década y Presidente Prudente, cerca de la mitad. El método CUSUM fue más sensible para detectar períodos epidémicos, sin embargo, los datos de normalidad y los supuestos han sido violados por la autocorrelación en serie en unos pocos meses. El método EWMA se consideró el más apropiado. Conclusiones: Los gráficos de control de procesos estadísticos se pueden utilizar para monitorear y comparar la incidencia de enfermedades entre diferentes regiones.
 
Publisher Universidad de Costa Rica
 
Date 2021-07-01
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistas.ucr.ac.cr/index.php/psm/article/view/47011
10.15517/psm.v19i2.47011
 
Source Población y Salud en Mesoamérica; Volume 19, Issue 1: July-december 2021
Población y Salud en Mesoamérica; Volumen 19, Número 1: julio-diciembre 2021
1659-0201
 
Language spa
 
Relation https://revistas.ucr.ac.cr/index.php/psm/article/view/47011/46625
/*ref*/Abujiya, M. R., Riaz, M., & Lee, M. H. (2013). Enhancing the Performance of Combined Shewhart-EWMA Charts. Quality and Reliability Engineering International, 29(8), 1093–1106. https://doi.org/10.1002/qre.1461 Assis, F. E. A., Wolf, S., Surek, M., De Toni, F., Souza, E. M., Pedrosa, F. O., … Fadel-Picheth, C. M. T. (2014). Impact of Aeromonas and diarrheagenic Escherichia coli screening in patients with diarrhea in Paraná, southern Brazil. The Journal of Infection in Developing Countries, 8(12), 1609–1614. https://doi.org/10.3855/jidc.4434 Baker, J. M., & Alonso, W. J. (2018). Rotavirus vaccination takes seasonal signature of childhood diarrhea back to pre-sanitation era in Brazil. Journal of Infection, 76(1), 68–77. https://doi.org/10.1016/j.jinf.2017.10.001 Benneyan, J. C. (2003). Statistical process control as a tool for research and healthcare improvement. Quality and Safety in Health Care, 12(6), 458–464. https://doi.org/10.1136/qhc.12.6.458 Chao, D. L., Roose, A., Roh, M., Kotloff, K. L., & Proctor, J. L. (2019). The seasonality of diarrheal pathogens: A retrospective study of seven sites over three years. PLOS Neglected Tropical Diseases, 13(8), e0007211. https://doi.org/10.1371/journal.pntd.0007211 Fonseca, P. A. M., Hacon, S. de S., Reis, V. L., Costa, D., & Brown, I. F. (2016). Using satellite data to study the relationship between rainfall and diarrheal diseases in a Southwestern Amazon basin. Ciência & Saúde Coletiva, 21(3), 731–742. https://doi.org/10.1590/1413-81232015213.20162015 Fontoura, V. M., Graepp-Fontoura, I., Santos, F. S., Santos Neto, M., Tavares, H. S. de A., Bezerra, M. O. L., … Nascimento, L. F. C. (2018). Socio-environmental factors and diarrheal diseases in under five-year old children in the state of Tocantins, Brazil. PLOS ONE, 13(5), e0196702. https://doi.org/10.1371/journal.pone.0196702 Gandy, A., & Lau, F. D.-H. (2013). Non-restarting cumulative sum charts and control of the false discovery rate. Biometrika, 100(1), 261–268. https://doi.org/10.1093/biomet/ass066 Gomes, I. C., Mingoti, S. A., & Oliveira, C. D. L. (2011). A novel experience in the use of control charts for the detection of nosocomial infection outbreaks. Clinics, 66(10), 1681–1689. https://doi.org/10.1590/S1807-59322011001000004 Ilmi, N. B., Darti, I., & Suryanto, A. (2020). Dynamical Analysis of a Rotavirus Infection Model with Vaccination and Saturation Incidence Rate. Journal of Physics: Conference Series, 1562, 012018. https://doi.org/10.1088/1742-6596/1562/1/012018 Kamioka, G. A., Madalosso, G., Pavanello, E. I., Sousa, S. C. Z. de, Bassit, N. P., & Sato, A. P. S. (2019). Norovírus no município de São Paulo, 2010-2016: estudo transversal sobre a principal causa de gastroenterite infantil*. Epidemiologia e Serviços de Saúde, 28(2), e2018290. https://doi.org/10.5123/S1679-49742019000200016 Kotloff, K. L. (2017). The Burden and Etiology of Diarrheal Illness in Developing Countries. Pediatric Clinics of North America, 64(4), 799–814. https://doi.org/10.1016/j.pcl.2017.03.006 Lima, A. A. M., Oliveira, D. B., Quetz, J. S., Havt, A., Prata, M. M. G., Lima, I. F. N., … Guerrant, R. L. (2019). Etiology and severity of diarrheal diseases in infants at the semiarid region of Brazil: A case-control study. PLOS Neglected Tropical Diseases, 13(2), e0007154. https://doi.org/10.1371/journal.pntd.0007154 Mbuya, M. N. N., & Humphrey, J. H. (2016). Preventing environmental enteric dysfunction through improved water, sanitation and hygiene: an opportunity for stunting reduction in developing countries. Maternal & Child Nutrition, 12, 106–120. https://doi.org/10.1111/mcn.12220 Mello, C. S., Rodrigues, M. S. do C., Filho, H. B. de A., Melli, L. C. F. L., Tahan, S., Pignatari, A. C. C., & de Morais, M. B. (2018). Fecal microbiota analysis of children with small intestinal bacterial overgrowth among residents of an urban slum in Brazil. Jornal de Pediatria, 94(5), 483–490. https://doi.org/10.1016/j.jped.2017.09.003 Meneguessi, G. M., Mossri, R. M., Segatto, T. C. V., & Reis, P. O. (2015). Morbimortalidade por doenças diarreicas agudas em crianças menores de 10 anos no Distrito Federal, Brasil, 2003 a 2012. Epidemiologia e Serviços de Saúde, 24(4), 721–730. https://doi.org/10.5123/S1679-49742015000400014 Mohammed, M. A. (2004). Using statistical process control to improve the quality of health care. Quality and Safety in Health Care, 13(4), 243–245. https://doi.org/10.1136/qshc.2004.011650 Montgomery, D. . . (2018). Introdução ao Controle Estatístico de Qualidade. In Introdução ao Controle Estatístico de Qualidade. O’Brien, S. (1997). Do CuSums have a role in routine communicable disease surveillance? Public Health, 111(4), 255–258. https://doi.org/10.1016/S0033-3506(97)00044-9 Oliveira, A. F. de, Leite, I. da C., & Valente, J. G. (2015). Global burden of diarrheal disease attributable to the water supply and sanitation system in the State of Minas Gerais, Brazil: 2005. Ciência & Saúde Coletiva, 20(4), 1027–1036. https://doi.org/10.1590/1413-81232015204.00372014 Reis, R. O. dos, Souza, M. N., Cecconi, M. C. P., Timm, L., Ikuta, N., Simon, D., … Lunge, V. R. (2018). Increasing prevalence and dissemination of invasive nontyphoidal Salmonella serotype Typhimurium with multidrug resistance in hospitalized patients from southern Brazil. The Brazilian Journal of Infectious Diseases, 22(5), 424–432. https://doi.org/10.1016/j.bjid.2018.08.002 Saleh, N. A., Mahmoud, M. A., Jones-Farmer, L. A., Zwetsloot, I., & Woodall, W. H. (2015). Another Look at the EWMA Control Chart with Estimated Parameters. Journal of Quality Technology, 47(4), 363–382. https://doi.org/10.1080/00224065.2015.11918140 Senouci, K., Bendaoud, A., Medles, K., Tilmatine, A., & Dascalescu, L. (2008). Comparative Study between the Shewhart and CUSUM Charts for the Statistic Control of Electrostatic Separation Processes. In 2008 IEEE Industry Applications Society Annual Meeting (pp. 1–5). IEEE. https://doi.org/10.1109/08IAS.2008.103 Troeger, C., Colombara, D. V, Rao, P. C., Khalil, I. A., Brown, A., Brewer, T. G., … Mokdad, A. H. (2018). Global disability-adjusted life-year estimates of long-term health burden and undernutrition attributable to diarrhoeal diseases in children younger than 5 years. The Lancet Global Health, 6(3), e255–e269. https://doi.org/10.1016/S2214-109X(18)30045-7 Troeger, C., Forouzanfar, M., Rao, P. C., Khalil, I., Brown, A., Reiner, R. C., … Mokdad, A. H. (2017). Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Infectious Diseases, 17(9), 909–948. https://doi.org/10.1016/S1473-3099(17)30276-1 Vaz, F. P. C., & Nascimento, L. F. C. (2017). Spatial distribution for diarrhea hospitalization in São Paulo State. Revista Brasileira de Saúde Materno Infantil, 17(3), 475–482. https://doi.org/10.1590/1806-93042017000300004 Woodall, W. H. (2006). The Use of Control Charts in Health-Care and Public-Health Surveillance. Journal of Quality Technology, 38(2), 89–104. https://doi.org/10.1080/00224065.2006.11918593 Woodall, W. H., & Faltin, F. W. (2019). Rethinking control chart design and evaluation. Quality Engineering, 31(4), 596–605. https://doi.org/10.1080/08982112.2019.1582779
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library