Basis of generated economic value distribution for business sustainability

CAPIC REVIEW

View Publication Info
 
 
Field Value
 
Title Basis of generated economic value distribution for business sustainability
Bases de la Distribución del Valor Económico Generado para la Sustentabilidad Empresarial
 
Creator Chahuan, Karime
Vásquez Verdugo, Jonathan
 
Subject assembled clustering
economic value
GRI
sustainnability
clustering ensamblado
GRI
sustentabilidad
valor económico
 
Description Corporate Social Responsibility (CSR) has been discussed over the last four decades. Global social demands require organizations to report their environmental and social impact, which can be done based on the standards of Global Reporting Initiative (GRI). These establish that economic value can be distributed in at least 5 aspects: Operational Costs, Salary and Employee Benefits, Payments to Suppliers, Payments to Government, and Investments in the Community. Given this, from a stakeholder’s perspective, inquiries arise about concentration in the distributed value. After an exploratory qualitative analysis followed by an Ensembled Clustering algorithm implementation, 3 and 5 groups were identified in 2018 and 2019 respectively from the companies with greater presences in the stock market. Each group has concentrations in 4 of the 5 aspects previously listed by the GRI. According to the results, the identification of these groups would allow investors to know the spotlights on the distributed value generation so using this as inputs when investments are made. Additionally, according to the results, the characteristics related to the Investments in the Community was identified as not considered by any groups, opening a gap of differentiating aspect and improvement by companies.
La Responsabilidad Social Corporativa (RSE) ha sido discutida durante las últimas cuatro décadas. Las demandas sociales mundiales exigen que las organizaciones reporten su impacto ambiental y social, los cuales pueden ser realizados en base a los estándares del Global Reporting Initiative (GRI). Estos guían a las empresas para mostrar el valor económico distribuido en al menos 5 aspectos, los cuales son Costos Operacionales, Salarios y Beneficios a empleados, Pago a Proveedores, Pagos al Gobierno, e Inversiones en la Comunidad. Dada esta facilidad, desde una perspectiva de parte interesada, surge la pregunta de la posible existencia en distintos focos de este valor distribuido. Luego de un análisis cualitativo exploratorio y la posterior aplicación de algoritmos de clustering ensamblados, se identificaron tres grupos en el año 2018  derivados de las empresas bajo estudio, que corresponden a las que tienen una mayor presencia en el mercado a través de sus cotizaciones bursátiles, y cinco grupos en el año 2019. Cada grupo tiene un enfoque en 4 de los 5 aspectos enlistados previamente por el GRI. De acuerdo a los  resultados obtenidos, la generación de grupos permite al inversionista conocer el foco de la distribución de la generación de valor en la empresa en la cuál realizará la inversión. Adicionalmente, el concepto Inversiones en la Comunidad no fue identificado como característico en los grupos identificados, pudiendo existir oportunidades de mejora por parte de las empresas.
 
Publisher Conferencia Académica Permanente de Investigación Contable
 
Date 2020-12-15
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo evaluado por pares
 
Format application/pdf
 
Identifier https://capicreview.com/index.php/capicreview/article/view/102
10.35928/cr.vol18.2020.102
 
Source CAPIC REVIEW; Vol 18 (2020): CAPIC REVIEW; 1-14
CAPIC REVIEW; Vol. 18 (2020): CAPIC REVIEW; 1-14
0718-4662
0718-4654
10.35928/cr.vol18.2020
 
Language spa
 
Relation https://capicreview.com/index.php/capicreview/article/view/102/63
/*ref*/Alqurashi, T. & Wang, W. (2019). Clustering ensemble method. International Journal of Machine Learning Cybernetics, 10(6), 1227-1246. doi:https://doi.org/10.1007/s13042-018-0807-8.
/*ref*/ATLAS.ti (2016). Software ATLAS.ti, Análisis cualitativo de datos.
/*ref*/Arora, P. & Varshney, S. (2016). Analysis of k-means and k-medoids algorithm for big data. Procedia Computer Science, 78, 507-512. doi:https://doi.org/10.1016/j.procs.2016.02.095
/*ref*/Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203.
/*ref*/Bolsa de Santiago (2020). SP IPSA. Disponible en: https://www.bolsadesantiago.com/detalle_indice/SP%20IPSA. Extraído el 20 de Marzo de 2020.
/*ref*/Chiu, D.S., & Talhouk, A. (2018). DiceR: An R package for class discovery using an ensemble driven approach. BMC Bioinformatics, 19(1), 11. https://doi.org/10.1186/s12859-017-1996-y
/*ref*/Creswell, J.W., & Creswell, J.D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
/*ref*/diceR package | R Documentation. (2019). Retrieved June 26, 2020, from https://www.rdocumentation.org/packages/diceR/versions/0.6.0
/*ref*/Fred, A.L., & Jain, A.K. (2005). Combining multiple clusterings using evidence accumulation. IEEE transactions on pattern analysis and machine intelligence, 27(6), 835-850. doi:https://doi.org/10.1109/tpami.2005.113
/*ref*/GRI (2016). Gri 201: Desempeño Económico 2016. Disponible en: https://www.globalreporting.org/standards/gri-standards-translations/gri-standards-spanish-translations-download-center/ Extraído el 03 de Abril de 2020.
/*ref*/McInnes, L., Healy, J. & Astels, S. (2017). Hdbscan: Hierarchical density based clustering. Journal of Open Source Software, 2(11), 205.
/*ref*/Moneva, J.M, Archel, P. Y Correa, C. (2006). GRI and the camouflaging of corporate unsustainability. Accounting Forum. 30(2). 121-137. https://doi.org/10.1016/j.accfor.2006.02.001
/*ref*/Provost, F. & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. " O'Reilly Media, Inc.".
/*ref*/Safiri, M. & Areeb, A. (2020): A qualitative analysis of GRI principles for defining sustainability report quality: an Australian case from the preparers’ perspective, Accounting Forum, DOI: 10.1080/01559982.2020.1736759
/*ref*/Șenbabaoğlu, Y., Michailidis, G., & Li, J.Z. (2014). Critical limitations of consensus clustering in class discovery. Scientific reports, 4(1), 1-13.
/*ref*/Smit, A. & Bierman, E. (2017). An evaluation of the reporting on ethics and integrity of selected listed motor vehicle companies. African Journal of Business Ethics. Vol 11 (1) 82- 102. DOI: https://doi.org/10.15249/11-1-152
/*ref*/Yang, F.C. (2017). Integrating corporate social responsibility and profitability into best practice selection: the case of large Taiwanese firms. Quality & Quantity, 51(4), 1493-1512. doi:10.1007/s11135-016-0348-8
 
Rights Derechos de autor 2020 Karime Chahuan, Jonathan Vasquez Verdugo
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library