IDENTIFICATION OF ENDOPHYTIC BACTERIA OF SEEDS FROM Cedrela odorata L. (Meliaceae) WITH BIOTECHNOLOGICAL CHARACTERISTICS

Acta Biológica Colombiana

View Publication Info
 
 
Field Value
 
Title IDENTIFICATION OF ENDOPHYTIC BACTERIA OF SEEDS FROM Cedrela odorata L. (Meliaceae) WITH BIOTECHNOLOGICAL CHARACTERISTICS
Identificación de bacterias endófitas de semillas de Cedrela odorata L. (Meliaceae) con características biotecnológicas
 
Creator Espinosa Zaragoza, Saúl
Sánchez Cruz, Ricardo
Sanzón Gómez, Diana
Escobar Sandoval, Margarita C
Yañez Ocampo, Gustavo
Morales Constantino, Mario A
Wong Villarreal, Arnoldo
 
Subject Cedar
Indole acetic Acid
Phytopathogenic
Aromatic Hydrocarbons
Microbiology
Cedro
Hidrocarburos aromáticos
Acido indolacético
Fitopatógeno
Microbiología
 
Description In the present study, 62 endophytic bacterial strains of cedar seeds (Cedrela odorataL.), collected in the municipalities of Huehuetán, Motozintla, and Pijijiapan in the state of Chiapas, Mexico were isolated. The goal was to identify characteristics of biotechnological interest such as biocontrol, promotion of plant growth, and growth in aromatic compounds. The strains were identified by the partial sequence of the 16S ribosomal gene as belonging to the Bacillusgenus. The biocontrol capacity of phytopathogenic fungi, production of indoleacetic acid (IAA), solubilization of phosphate, and growth in xenobiotic compounds (phenanthrene, benzene, anthracene, or phenol) were detected in 26 strains of the 62 isolates. 21 % of the strains inhibited the mycelial growth of Alternaria solaniand Fusariumsp., and 13 % of the Phytophthora capsicioomycete. IAA production was detected in 24 isolates, phosphate solubilizing activity was identified in 18 isolates, while the ability to grow in the presence of phenanthrene and benzene was found in 26 isolates; 24 isolates grew in the presence of anthracene and only two isolates grew in phenol as the only carbon sources. This is the first report of the isolation and identification of endophytic bacteria from cedar seeds, where biotechnological characteristics were detected for biological control, promotion of plant growth, and growth in the presence of xenobiotic compounds.
En el presente estudio se aislaron 62 cepas bacterianas endófitas de semillas de cedro (Cedrela odorataL.) colectadas en los municipios de Huehuetán, Motozintla y Pijijiapan en el estado de Chiapas, México, con el objetivo de identificar características de interés biotecnológicas como biocontrol, promoción del crecimiento vegetal y crecimiento en compuestos aromáticos. Las cepas se identificaron por la secuencia parcial del gen 16S ribosomal como pertenecientes al género Bacillus. En 26 cepas de las 62 aisladas se detectaron la capacidad de biocontrol de hongos fitopatógenos, la producción de ácido indolacético (AIA), la solubilización de fosfato y el crecimiento en compuestos xenobióticos (fenantreno, benceno, antraceno o fenol). El 21 % de las cepas inhibió el crecimiento miceliar de Alternaria solani y Fusarium sp., y el13 % del oomicetoPhytophthora capsici. La producción de ácido indolacético se detectó en 24 aislados y la actividad solubilizadora de fosfato se encontró en 18 aislados, mientras que la capacidad de crecer en presencia de fenantreno y benceno se manifestó en 26 aislados (24 aislados crecieron en presencia de antraceno y solo dos aislados crecieron en fenol como únicas fuentes de carbono). Es importante mencionar que este es el primer reporte del aislamiento e identificación de bacterias endófitas de semillas de cedro, en el que se detectaron características biotecnológicas para el control biológico, la promoción del crecimiento vegetal y el crecimiento en presencia de compuestos xenobióticos.
 
Publisher Universidad Nacional de Colombia - Sede Bogotá - Faculdad de Ciencias - Departamento de Biología
 
Date 2021-01-13
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistas.unal.edu.co/index.php/actabiol/article/view/85325
10.15446/abc.v26n2.85325
 
Source Acta Biológica Colombiana; Vol. 26 Núm. 2 (2021); 196 - 206
Acta Biológica Colombiana; Vol. 26 No. 2 (2021); 196 - 206
1900-1649
0120-548X
 
Language eng
 
Relation https://revistas.unal.edu.co/index.php/actabiol/article/view/85325/77722
/*ref*/Banerjee G, Gorthi S, Chattopadhyay P. Beneficial effects of bio-controlling agent Bacillus cereus IB311 on the agricultural crop production and its biomass optimization through response surface methodology. An Acad Bras Cienc. 2018; 90(2): 2149-2159. Doi: http://dx.doi.org/10.1590/0001-3765201720170362 Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, et al. Engineered endophytic bacteria improve phytoremediation of water soluble, volatile, organic pollutants. Nat Biotechnol. 2004; 22: 583-588. Doi: https://doi.org/10.1038/nbt960 Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol. 2017; 55:61-83. Doi: https://doi.org/10.1146/annurev-phyto-080516-035641 Caballero-Mellado J, Onofre -Lemus J, Estrada -de los Santos P, Martínez -Aguilar L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol. 2007; 73:5308-5319. Doi: https://doi.org/10.1128/AEM.00324-07 Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol. 2011; 62: 188-197. Doi: https://doi.org/10.1007/s00248-011-9883-y Díaz Herrera S, Grossi C, Zawoznik M, Groppa MD. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res. 2016; 186-187: 37-43. Doi: https://doi.org/10.1016/j.micres.2016.03.002 Estrada-Contreras I, Equihua M, Laborde J, Martínez Meyer E, Sánchez-Velásquez LR. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike. PLoS ONE. 2016; 11: e0164178. Doi: https://doi.org/10.1371/journal.pone.0164178 Fazzeli H, Reza AM, Nasr EB, Khorvash F, Reza M. Development of PCR-based method for detection of Enterobacteriaceae in septicemia. J Res Med Sci. 2012; 17: 671-675. Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G. Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol. 2012; 63: 418-428. Doi: https://doi.org/10.1007/s00248-011-9942-4 Gałązka A, Gałązka R. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant. Pol J Microbiol. 2015;64(3):241-252. Doi: https://doi.org/10.5604/01.3001.0009.2119 Germaine KJ, Liu X, Garcia Cabellos G, Hogan JP, Ryan D, Dowling DN. Bacterial endophyte enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol. 2006; 57(2): 302-310. Doi: https://doi.org/10.1111/j.1574-6941.2006.00121.x Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995; 61: 793-796. Doi: https://doi.org/10.1128/AEM.61.2.793-796.1995 Guo Z, Chen R, Xing R, Liu S, Yu H, Wang P, et al. Novel derivarives of chitosan and their antifungal activities in vitro. Carbohydr Res. 2006; 34(3): 351-354. Doi: https://doi.org/10.1016/j.carres.2005.11.002 Jiang J, Liu H, Li Q, Gao N, Yao Y, Xu H. Combined remediation of Cd–phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotox Environ Safe. 2015;120:386-39.Doi: https://doi.org/10.1016/j.ecoenv.2015.06.028 Jukes TH, Cantor CR. Evolution of Protein Molecules. In: Munro HN, editor. Mammalian Protein Metabolism. New York: Academic Press; 1969. p. 21–132. Doi: https://doi.org/10.1016/B978-1-4832-3211-9.50009-7 Kane KH. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot. 2011; 71(3): 337-344. Doi: https://doi.org/10.1016/j.envexpbot.2011.01.002 Kazunga C, Aitken MD. Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol. 2000; 66(5):1917-22. Doi: https://doi.org/10.1128/aem.66.5.1917-1922.2000
/*ref*/Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol. 2012; 12: 3-14. Doi: https://doi.org/10.1186/1471-2180-12-3 Khan N, Zandi P, Ali S, Mehmood A, Adnan Shahid M, Yang J. Impact of Salicylic Acid and PGPR on the Drought Tolerance and Phytoremediation Potential of Helianthus annuus. Front Microbiol. 2018 2507. Doi: https://doi.org/10.3389/fmicb.2018.02507 Lee SA, Park J, Chu B, Kim JM, Joa JH, Sang MK, et al. Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. J Microbiol. 2016; 54: 823–831. Doi: https://doi.org/10.1007/s12275-016-6410-3 Leitão AL, Enguita FJ. Gibberellins in Penicillium strains: challenges for endophyte plant host interactions under salinity stress. Microbiol Res. 2015; 183: 8-18. Doi: https://doi.org/10.1016/j.micres.2015.11.004 Liu S-H, Zeng G-M, Niu Q-Y, Liu Y, Zhou L, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour Technol. 2017; 224:25-33. Doi: https://doi.org/10.1016/j.biortech.2016.11.095 Martínez-Álvarez JC, Castro-Martínez C, Sánchez-Peña P, Gutiérrez-Dorado DR, Maldonado-Mendoza IE. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World J Microbiol Biotechnol. 2016; 32:75. Doi: https://doi.org/10.1007/s11274-015-2000-5 Park J-M, Radhakrishnan R, Kang S-M, Lee I-J. IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol. 2015; 55: 207-212. Doi: https://doi.org/10.1007/s12088-015-0515-y Partida-Martínez LP, Heil M. The microbe-free plant: fact or artifact?. Front Plant Sci. 2011; 2:100. Doi: https://doi.org/10.3389/fpls.2011.00100 Rahman A, Sitepu I, Tang SY, Hashidoko Y. Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium strongly acidic tropical Peat soil. Biosci Biotechnol Biochem. 2010; 74: 2202–2208. Doi: https://doi.org/10.1271/bbb.100360 Rosenblueth M, López-López A, Martínez J, Rogel MA, Toledo I, Martínez-Romero E. Seed bacterial endophytes: common genera, seed-to- seed variability and their possible role in plants. Acta Hortic. 2012; 938: 39-48. Doi: https://doi.org/10.17660/ActaHortic.2012.938.4 Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4: 406–425. https://doi.org/oxfordjournals.molbev.a040454. Sánchez-Cruz R, Tapia Vázquez I, Batista-García R, Méndez-Santiago EW, Sánchez-Carbente M, et al. Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potencial. Microbiol Res. 2019; 218: 76-86. Doi: https://doi.org/10.1016/j.micres.2018.09.008 de Silva MCS, Polonio JC, Quecine MC, de Almeida TT, Bogas AC, Pamphile JA, et al. Endophytic cultivable bacterial community obtained from the Paullinia cupana seed in Amazonas and Bahia regions and its antagonistic effects against Colletotrichum gloeosporioides. Microb Pathog. 2016; 98:16-22. Doi: https://doi.org/10.1016/j.micpath.2016.06.023 Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016; 183: 92–99. Doi: https://doi.org/10.1016/j.micres.2015.11.008 Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ. Plant growth promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ. 2017a; 5:e3107. Doi: https://doi.org/10.7717/peerj.3107 Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ. Inoculation of abscisic acid producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot. 2017b; 136: 68–77. Doi: https://doi.org/10.1016/j.envexpbot.2017.01.010 Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Fron Plant Sci. 2018; 9:1-10. Doi: https://doi.org/10.3389/fpls.2018.00024 Shahzad R, Khan AL, Waqas M, Asaf S, Khan MA, Kang SM. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem. 2016; 106: 236–243. Doi: https://doi.org/10.1016/j.plaphy.2016.05.006 Siciliano SD, Goldie H, Germida JJ. Enzymatic activity in root exudates of dahurian wild rye (Elymus dauricus) that degrades 2-chlorobenzoic acid. J Agric Food Chem. 1998; 46(1): 5–7. Doi: https://doi.org/10.1021/jf9708195 Smith SA, Tank DC, Boulanger LA, Bascom-Slack SC, Eisenman K, Kingery D, et al. Bioactive endophytes warrant intensified exploration and conservation. PLoS ONE. 2008; 3:e3052. Doi: https://doi.org/10.1371/journal.pone.0003052 Sobolev VS, Orner VA, Arias RS. Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions. Plant Soil. 2013; 371: 367–376. Doi: https://doi.org/10.1007/s11104-013-1692-2 Spaepen SJ, Vanderleyden J. Auxin and plant-microbe interactions. In: Estelle M, Weijers D, Leyser O, Ljung K, editor. Cold Spring Harbor perspectives in biology. NY, Cold Spring Harbor Laboratory Press; 2011. p. 1–13. Doi: https://doi.org/ 10.1101/cshperspect.a001438 Suman A, Yadav AN, Verma P. Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture. In: Singh D, Singh H, Prabha R, editos. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer; 2016. p. 117-143. Doi: https://doi.org/10.1007/978-81-322-2647-5_7 Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D. Horizontal gene transfer to endogenous endophytic bacteria from poplar improved phytoremediation of toluene. Appl Environ Microbiol. 2005; 71(12): 8500-8505. Doi: https://doi.org/10.1128/AEM.71.12.8500-8505.2005 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30(12): 2725-2729. Doi: https://doi.org/10.1093/molbev/mst197 Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF. Seed-vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol. 2017;122(6): 1680-1691. Doi: https://doi.org/10.1111/jam.13463 Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991; 173(2): 697–703. Doi: https://doi.org/10.1128/JB.173.2.697-703.1991 White JF, Kingsley KI, Kowalski KP, Irizarry I, Micci A, Soares MA, et al. Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Plant Soil. 2018; 422:195-208. Doi: https://doi.org/10.1007/s11104-016-3169-6 Wong VA, Kante LF, Reyes RA, Sánchez CR, De Leon MA, Yañez OG, et al. Identification of bacteria from the rhizosphere of Jatropha curcas with characteristics of biotechnological interest. J Pure Appl Micriobiol. 2015; 9: 2025-203 Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, et al. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. 2014. World J Microbiol Biotechnol. 30; 835–845. Doi: https://doi.org/10.1007/s11274-013-1486-y Zhu X, Wang W, Crowley DE, Sun K, Hao S, Waigi MG, et al. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat. Environ Sci Pollut Res Int. 2017;24(7):6648-6656. Doi: https://doi.org/10.1007/s11356-016-8345-y
 
Rights Derechos de autor 2021 Acta Biológica Colombiana
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library