Cassava: bread and meat, a potential alternative to tackle hidden hunger

Acta Biológica Colombiana

View Publication Info
 
 
Field Value
 
Title Cassava: bread and meat, a potential alternative to tackle hidden hunger
YUCA: PAN Y CARNE, UNA ALTERNATIVA POTENCIAL PARA HACER FRENTE AL HAMBRE OCULTA
 
Creator Diaz Tatis, Paula
López Carrascal, Camilo Ernesto
 
Subject agricultura
almidón
desnutrición
diversidad
alimentación
Biología
nutrición
diversidad
agriculture
starch
malnutrition
diversity
feeding
 
Description One of the challenges facing humanity is to ensure food and adequate nutrition for the nearly eight billion inhabitants of the planet. Cassava roots constitute the fourth most important source of calories for the human population, being one of the pillars of food security. Cassava roots do not have adequate nutritional attributes. Although there are varieties with relatively high values of these compounds, these are far from those necessary to ensure the minimum requirements of the human population. Cassava leaves have a high content of protein, minerals, and vitamins, so they represent an alternative nutritional source. However, their consumption in Latin America is scarce due to the high levels of cyanide they possess. In some countries of Africa and Asia, the leaves are consumed through various recipes that include cooking, thus eliminating a large amount of cyanogen content. This review presents an overview of the nutritional importance of cassava, the different strategies of classical and unconventional genetic improvement aimed at increasing the nutritional content of roots, and the importance of exploiting the intrinsic variability of cassava as a source of varieties and genes that can contribute to the development of strategies directed to developing materials with the appropriate nutritional requirements. Finally, the potential of cassava leaves to be used in complementary programs aimed at improving the nutritional quality of the human population is presented.
Uno de los retos que encara la humanidad es asegurar la alimentación y la adecuada nutrición para los cerca de ocho billones de habitantes del planeta. Las raíces de yuca constituyen la cuarta fuente más importante de calorías para la población humana siendo uno de los pilares de la seguridad alimentaria. Las raíces de yuca no poseen atributos nutricionales adecuados. Aunque existen variedades con valores relativamente altos de estos compuestos, sus valores están lejos de los necesarios para asegurar los requerimientos mínimos de la población humana. Las hojas de yuca poseen valores altos de contenido proteico, minerales y vitaminas, por lo que representan una fuente nutricional alternativa. Sin embargo, el consumo de hojas de yuca en América Latina es escaso o nulo como consecuencia de los altos niveles de cianuro que poseen. En algunos países de África y Asia las hojas se consumen a través de diversas recetas que incluye su cocción, eliminando así una gran cantidad del contenido cianógeno. En esta revisión se presenta un panorama general de la importancia nutricional de la yuca, las diferentes estrategias de mejoramiento genético clásico y no convencional destinados a incrementar los contenidos nutricionales de raíces y la importancia de la explotación de la variabilidad intrínseca de la yuca como una fuente de variedades y genes que puedan contribuir a la implementación de estrategias encaminadas a desarrollar materiales con los requerimientos nutricionales adecuados. Finalmente, se presenta el potencial que tienen las hojas de yuca para ser empleadas dentro de programas complementarios destinados a mejorar la calidad nutricional de la población humana.
 
Publisher Universidad Nacional de Colombia - Sede Bogotá - Faculdad de Ciencias - Departamento de Biología
 
Date 2021-01-14
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistas.unal.edu.co/index.php/actabiol/article/view/84569
10.15446/abc.v26n2.84569
 
Source Acta Biológica Colombiana; Vol. 26 Núm. 2 (2021); 235 - 246
Acta Biológica Colombiana; Vol. 26 No. 2 (2021); 235 - 246
1900-1649
0120-548X
 
Language spa
 
Relation https://revistas.unal.edu.co/index.php/actabiol/article/view/84569/77719
/*ref*/Achidi AU, Ajayi OA, Maziya-Dixon B, Bokanga M. The effect of processing on the nutrient content of cassava (Manihot esculenta Crantz) leaves. J Food Process Preserv. 2008;32(3):486–502. Doi: https://doi.org/10.1111/j.1745-4549.2007.00165.x Aguilera M. La yuca en el Caribe colombiano: de cultivo ancestral a agroindustrial. Cartagena; 2012. Report No.: 158 de 2012. Disponible en: http://www.banrep.gov.co/docum/Lecturafinanzas/pdf/dtser158.pdf. Citado: 14 Ene 2020 Allem AC. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol. 1994;41:133–150. Doi: https://doi.org/10.1007/BF00051630 Allem AC. The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica. 1999;107:123–33. Doi: https://doi.org/10.1023/A:1026422229054 Amoroso L. The Second International Conference on Nutrition: Implications for Hidden Hunger. World Rev Nutr Diet. 2016;115:142-152.Doi: https://doi.org/10.1159/000442100 Balarajan Y, Ramakrishnan U, Özaltin E, Shankar AH, Subramanian SV. Anemia in low-income and middle-income countries. Lancet. 2011;378(9809):2123–35. Doi: https://doi.org/10.1016/S0140-6736(10)62304-5 Bechoff A, Chijioke U, Westby A, Tomlins KI. “ Yellow is good for you”: consumer perception and acceptability of fortified and biofortified cassava products. 2018;8259:1–22. Doi: https://doi.org/10.1371/journal.pone.0203421 Bechoff A, Tomlins K, Fliedel G, Lopez-lavalle LAB, Westby A, Hershey C, et al. Cassava traits and end-user preference: relating traits to consumer liking, sensory perception, and genetics. Crit Rev Food Sci Nutr. 2018;58(4):547-567. Doi: https://doi.org/10.1080/10408398.2016.1202888 Bezanson K, Isenman P. Scaling up nutrition: a framework for action. Food Nutr Bull; 2010;31(1):178–186. Doi: https://doi.org/10.1177/156482651003100118 Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE. Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol. Breed. 2009;23:197–207. Doi: https://doi.org/10.1007/s11032-008-9225-z Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 2016;34:562–570. Doi: http://doi.org/10.1038/nbt.3535 Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–51. Doi: https://doi.org/10.1016/S0140-6736(13)60937-X Bradbury EJ, Duputié A, Delêtre M, Roullier C, Narváez-Trujillo A, Manu-Aduening JA, et al. Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am J Bot. 2013;100(5):857–66. Doi: https://doi.org/10.3732/ajb.1200482 Chavarriaga-Aguirre PP, Maya MM, Bonierbale MW, Kresovich S, Fregene MA, Tohme J, et al. Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet. 1998;97:493–501. Doi: https://doi.org/10.1007/s001220050 Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, et al. Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica. 2005;143(1-2):125–33. Doi: https://doi.org/10.1007/s10681-005-3057-2 de Onis M, Branca F. Childhood stunting: a global perspective. Matern Child Nutr. . 2016;12(S1):12–26. Doi: https://doi.org/10.1111/mcn.12231 Drapal M, Barros de Carvalho E, Ovalle Rivera TM, Lopez-Lavalle LAB, Fraser PD. Capturing biochemical diversity in Cassava (Manihot esculenta Crantz) through the application of metabolite profiling. J Agric Food Chem. 2019;67(3):986-993. Doi: https://doi.org/10.1021/acs.jafc.8b04769 Eggum BO. The protein quality of cassava leaves. Br J Nutr. 1970;24(3):761–8. Doi: https://doi.org/10.1079/BJN19700078 Elias M, Panaud O, Robert T. Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz ) farming system, using AFLP markers. Heredity 2000;85:219–30. Doi: https://doi.org/10.1046/j.1365-2540.2000.00749.x Elias M, Mckey D, Panaud O, Anstett MC, Robert T. Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America): perspectives for on-farm conservation of crop genetic resources. Euphytica. 2001a;120:143–57. Doi: https://doi.org/10.1023/A:1017501017031 Elias M, Penet L, Vindry P, McKey D, Panaud O, Robert T. Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz) in a traditional farming system. Mol Ecol. 2001b;10(8):1895–907. Doi: https://doi.org/10.1046/j.0962-1083.2001.01331.x Elias M, Muhlen GS, Mckey D, Roa AC, Tohme J. Genetic diversity of traditional South American landraces of Cassava (Manihot esculenta Crantz): an analysis using microsatellites. Econ Bot. 2004;58:242–56. Doi: https://doi.org/10.1663/0013-0001(2004)058[0242:GDOTSA]2.0.CO;2 Emperaire L, Peroni N. Traditional management of agrobiodiversity in Brazil : a case study of Manioc. Hum Ecol. 2007;35(6):761–8. Doi: https://doi.org/10.1007/s10745-007-9121-x FAO. (2018). Food Outlook, Biannual Report on Global Food Markets. Trade and Markets Division of FAO. http://www.fao.org/3/CA2320EN/ca2320en.pdf Fischer T, Byerlee D, Edmeades G. Crop yields and global food security: will yield increase continue to feed the world?. Canberra: ACIAR; 2014. p. 634. Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, et al. Simple sequence repeat (SSR) diversity of cassava (Manihot esculenta Crantz) landraces: genetic diversity and differentiation in a predominantly asexually propagated crop. Theor Appl Genet. 2003;107:1083–93. Doi: https://doi.org/10.1007/s00122-003-1348-3 Gaitán-Solís E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci. 2015;6:492. Doi: https://doi.org/10.3389/fpls.2015.00492 Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK. Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil. 2008;314: 49–66. Doi: https://doi.org/10.1007/s11104-008-9704-3 Gómez W, Cardona Ayala C, Rivero S. Producción y calidad del forraje de tres variedades de yuca bajo tres densidades de siembra. Temas Agrarios. 2016;21(2): 9-20. Doi: https://doi.org/10.21897/rta.v21i2.897 González C, Johnson N, Qaim M. Consumer acceptance of second‐generation GM foods: the case of biofortified Cassava in the North‐east of Brazil. J Agric Econ. 2009;60(3):604–24. Doi: https://doi.org/10.1111/j.1477-9552.2009.00219.x Govender L, Pillay K, Siwela M, Modi AT, Mabhaudhi T. Consumer perceptions and acceptability of traditional dishes prepared with provitamin A-biofortified maize and sweet potato. Nutrients. 2019;11(7):1577. Doi: https://doi.org/10.3390/nu11071577 Gu R, Chen F, Liu B, Wang X, Liu J, Li P, Pan Q, et al. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor Appl Genet. 2015;128(9):1777-1789. Doi: https://doi.org/10.1007/s00122-015-2546-5 Heckler S, Zent S. Piaroa Manioc Varietals : Hyperdiversity or social currency? Hum Ecol. 2008;36(5):679–97. Doi: https://doi.org/10.1007/s10745-008-9193-2 Henry RJ. Innovations in plant genetics adapting agriculture to climate change. Curr Opin Plant Biol. 2019;S1369-5266(19)30112-8. Doi: https://doi.org/10.1016/j.pbi.2019.11.004 Howeler RH. The cassava handbook : a reference manual based on the Asian Regional Cassava Training Course, held in Thailand. Bangkok: Centro Internacional de Agricultura Tropical (CIAT); 2012. 801 p. Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531-551. Doi: https://doi.org/10.1146/annurev-arplant-050213-035715 Ihemere UE, Narayanan NN, Sayre RT. Iron biofortification and homeostasis in transgenic Cassava roots expressing the algal iron assimilatory gene, FEA1. Front Plant Sci. 2012;3:171. Doi: https://doi.org/10.3389/fpls.2012.00171 Ilona P, Bouis HE, Palenberg M, Moursi M, Oparinde A. Vitamin A cassava in Nigeria: crop development and delivery. African J Food Agric Nutr Dev. 2017;17(2): 12000-12025. doi: https://doi.org/10.18697/ajfand.78.HarvestPlus09 Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim D-J. Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed. 2009;23(4):669–84. Doi: https://doi.org/10.1007/s11032-009-9264-0 Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012;63:131–152. Doi: https://doi.org/10.1146/annurev-arplant-042811-105522 Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, et al. Mapping quantitative trait loci controlling high iron and zinc content in self and Open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci. 2016;7:1636. Doi: https://doi.org/10.3389/fpls.2016.01636 Latif S, Müller J. Potential of cassava leaves in human nutrition: a review. Trends Food Sci Technol. 2015;44(2):147–58. Doi: https://doi.org/10.1016/j.tifs.2015.04.006 Latif S, Zimmermann S, Barati Z, Müller J. Detoxification of Cassava leaves by thermal, sodium bicarbonate, enzymatic, and ultrasonic treatments. J Food Sci. 2019;84(7):1986–91. Doi: https://doi.org/10.1111/1750-3841.14658 Lau WCP, Rafii MY, Ismail MR, Puteh A, Latif MA, Ramli A. Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Front Plant Sci. 2015;6:832. doi: https://doi.org/10.3389/fpls.2015.00832 Manjeru P, Van Biljon A, Labuschagne M. The development and release of maize fortified with provitamin A carotenoids in developing countries. Crit Rev Food Sci Nutr. 2019;59(8):1284-1293. Doi: https://doi.org/10.1080/10408398.2017.1402751 Maziya-Dixon B, Kling JG, Dixon AM. Genetic Variation in total carotene, iron, and zinc contents of Maize and Cassava genotypes. Food Nutr Bull. 2000;21(4):419–22. Doi: https://doi.org/10.1177%2F156482650002100415 Montagnac JA, Davis CR, Tanumihardjo SA. Nutritional value of Cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf. 2009a;8(3):181–94. Doi: https://doi.org/10.1111/j.1541-4337.2009.00077.x Montagnac JA, Davis CR, Tanumihardjo SA. Processing techniques to reduce toxicity and antinutrients of Cassava for use as a staple food. Compr Rev Food Sci Food Saf. 2009b;8(1):17–27. Doi: https://doi.org/10.1111/j.1541-4337.2008.00064.x Muthayya S, Rah JH, Sugimoto JD, Roos FF, Kraemer K, Black RE. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One. 2013;8(6). doi: https://doi.org/10.1371/journal.pone.0067860 Narayanan N, Beyene G, Chauhan RD, Gaitán-solís E, Gehan J, Butts P, et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat Biotechnol. 2019;37:144-151. Doi: https://doi.org/10.1038/s41587-018-0002-1 Ngiki YU, Igwebuiki JU, Moruppa S. Utilization of cassava products for poultry feeding: A review. Int J Sci Technol. 2014;2:48–59. Olsen KM, Schaal BA. Evidence on the origin of cassava : Phylogeography of Manihot esculenta. Proc Natl Acad Sci USA. 1999;96:5586–91. Doi: https://doi.org/10.1073/pnas.96.10.5586 OMS. (10 de Enero de 2020). Organización Mudial de la Salud. ¿Qué es la malnutrición? https://www.who.int/features/qa/malnutrition/es/ Ospina B, Ceballos H. La yuca en el Tercer Milenio: sistemas modernos de producción, procesamiento, utilización y comercialización. Bogotá: CIAT, CLAYUCA; 2002. 586 p. Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci. 2008;13: 464–473. Doi: https://doi.org/10.1016/j.tplants.2008.06.005 Peña-Venegas CP, Stomph TJ, Vershoor G, Becerra Lopez-Lavalle LA, Struik PC. Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity. 2014;6(4):792–826. Doi: https://doi.org/10.3390/d6040792 Pérez D, Mora R, López-Carrascal C. Conservación de la diversidad de yuca en los sistemas tradicionales de cultivo de la Amazonía. Acta Biol Colomb. 2019;24(2):202-212. Doi: http://dx.doi.org/10.15446/abc.v24n2.75428 Ravindran G, Ravindran V. Changes in the nutritional composition of Cassava (Manihot esculenta Crantz) leaves during maturity. Food Chem. 1988;27(4):299-309. Doi: https://doi.org/10.1016/0308-8146(88)90014-3 Rogers DJ. Cassava leaf protein. Econ Bot. 1959;13(3). Doi: https://doi.org/10.1007/BF02860586 Rogers DJ, Milner M. Amino acid profile of manioc leaf protein in relation to nutritive value. Econ Bot. 1963;17(3):211–6. Doi: https://doi.org/10.1007/BF02859438 Montero-Rojas MM, Correa AM, Siritunga D. Molecular differentiation and diversity of cassava (Manihot esculenta) taken from 162 locations across Puerto Rico and assessed with microsatellite markers. AoB Plants. 2017;1–13. Doi: https://doi.org/10.1093/aobpla/plr010 Ruel-Bergeron JC, Stevens GA, Sugimoto JD, Roos FF, Ezzati M, Black RE, et al. Global update and trends of hidden hunger, 1995-2011: The Hidden Hunger Index. PLoS One. 2015;10(12):e0143497. Doi: https://doi.org/10.1371/journal.pone.0143497 Smith P, Gregory PJ. Climate change and sustainable food production. Proc Nutr Soc. 2013;72(1):21-28. Doi: https://doi.org/10.1017/S0029665112002832 Sompong U, Somta P, Raboy V, Srinives P. Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci. 2012;62(1):87-92. Doi: https://doi.org/10.1270/jsbbs.62.87 Suarez L, Mederos V. Apuntes sobre el cultivo de yuca (Manihot esculenta Crantz) tendencias actuales. Cultiv Trop. 2011;32(3):27–35. Talsma EF, Borgonjen-van den Berg KJ, Melse-Boonstra A, Mayer EV, Verhoef H, Demir AY, et al. The potential contribution of yellow cassava to dietary nutrient adequacy of primary-school children in Eastern Kenya; the use of linear programming. Public Health Nutr. 2017;21(2):365–76. Doi: https://doi.org/10.1017/S1368980017002506 Teles FF. Chronic poisoning by hydrogen cyanide in cassava and its prevention in Africa and Latin America. Food Nutr Bull. 2002;23(4):407-412. Doi: https://doi.org/10.1177/156482650202300418 Tiago AV, Rossi AAB, Tiago PV, Carpejani AA, Silva BM, Hoogerheide ESS, et al. Genetic diversity in cassava landraces grown on farms in Alta Floresta-MT, Brazil. Genet Mol Res. 2016;15(3). Doi: https://doi.org/10.4238/gmr.15038615 Tovar E, Bocanegra JL, Villafañe C, Fory L, Velasquez A, Gallego G, et al. Diversity and genetic structure of cassava landraces and their wild relatives (Manihot spp.) in Colombia revealed by simple sequence repeats. Plant Genet Resour. 2015;14(3):200–210. Doi: https://doi.org/10.1017/S1479262115000246 UN. United Nations. Sustainable Development Goal 2: end hunger, achieve food security and improved nutrition and promote sustainable agriculture. United Nations Sustainable Development Knowledge Platform. 2017. Disponible en: https://sustainabledevelopment.un.org/sdg2¬¬. Citado: 14 Ene 2020.
 
Rights Derechos de autor 2021 Acta Biológica Colombiana
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library