VASCULAR EPIPHYTES: THE UGLY DUCKLING OF PHENOLOGICAL STUDIES

Acta Biológica Colombiana

View Publication Info
 
 
Field Value
 
Title VASCULAR EPIPHYTES: THE UGLY DUCKLING OF PHENOLOGICAL STUDIES
Epífitas vasculares: el patito feo de los estudios fenológicos
 
Creator RAMÍREZ MARTÍNEZ, ADRIANA
MONDRAGÓN CHAPARRO, DEMETRIA MARTHA
RIVERA GARCÍA, RAÚL
 
Subject biología reproductiva
biología vegetativa
desarrollo estacional
dispersión
factores ambientales
polinización
ECOLOGIA
BIOLOGÍA
BOTÁNICA
environmental factors
dispersion
pollination
reproductive biology
seasonal development
vegetative biology
ECOLOGY
BIOLOGY
BOTANICS
 
Description The phenology of vascular epiphytes, which represent account for about 10 % of the world’s flowering plants and perform important ecological functions, has been just partially explored. Since phenology is a key tool for the management and conservation of species, the objective of this review was to synthesize the information published so far about the phenology of vascular epiphytes, detect gaps of knowledge, and suggest future lines of investigation to understand the underlying mechanisms. We conducted an online search for articles in Google Scholar and in the ISI Web of Science database from 1800 to 2020, with different combinations of keywords. 107 studies addressing the phenology of different holo-epiphyte species were found; 88 % of the studies were performed in the Neotropic, especially in tropical and subtropical wet forests. The phenology of only ca.2% (418 spp.) of all reported epiphyte species has been explored. There is a bias toward the study of the flowering and fruiting phenology in members of the Orchidaceae (192 spp.) and Bromeliaceae (124 spp.) families. In general, the vegetative and reproductive phenology of epiphytes tends to be seasonal; however, there is a huge gap in our understanding of the proximate and ultimate factors involved. Future research should explicitly focus on studying those factors.
Las epífitas vasculares, que representan cerca del 10 % de la flora vascular y cumplen funciones ecológicas importantes, se han explorado poco desde el punto de vista fenológico. Dado que la fenología es una herramienta clave para el manejo y conservación de especies, el objetivo de este trabajo fue sintetizar la información publicada, detectar vacíos de conocimiento y sugerir líneas de investigación que permitan entender los mecanismos que regulan la fenología de este grupo. Se realizó una búsqueda de artículos en Google Académico y en la base de datos ISI Web of Science desde 1800 a 2020, con diferentes combinaciones de palabras clave. Se encontraron 107 estudios que abordan la fenología de especies holo-epífitas, el 88 % de estos estudios se realizaron en el Neotrópico, principalmente en bosques lluviosos tropicales y subtropicales. Solamente se ha estudiado la fenología del ca.2 % (418 spp.) del total de especies epífitas reportadas; los trabajos se han enfocado principalmente en estudiar la floración y fructificación de miembros de Orchidaceae (192 spp.) y Bromeliaceae (124 spp.). La fenología vegetativa y reproductiva de las epífitas tiende a ser estacional. Sin embargo, existe un vacío enorme de los factores próximos (abióticos) y últimos (bióticos) implicados; los futuros estudios pueden enfocarse a elucidar que factores detonan la fenología de epífitas vasculares.
 
Publisher Universidad Nacional de Colombia - Sede Bogotá - Faculdad de Ciencias - Departamento de Biología
 
Date 2021-01-14
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistas.unal.edu.co/index.php/actabiol/article/view/83473
10.15446/abc.v26n2.83473
 
Source Acta Biológica Colombiana; Vol. 26 Núm. 2 (2021); 247 - 261
Acta Biológica Colombiana; Vol. 26 No. 2 (2021); 247 - 261
1900-1649
0120-548X
 
Language eng
 
Relation https://revistas.unal.edu.co/index.php/actabiol/article/view/83473/77718
/*ref*/Ackerman JD. Euglossine bee pollination of the orchid, Cochleanthes lipscombiae: A food source mimic. Am J Bot. 1983;70(6):830-834. Doi: https://doi.org/10.1002/j.1537-2197.1983.tb06420.x Ackerman JD. Coping with the epiphytic existence: pollination strategies. Selbyana. 1986;9(1):52-60. Ackerman JD. Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Syst Bot. 1989;14(1):101-109. Doi: https://doi.org/10.2307/2419054 Aguilar‐Rodríguez PA, Krömer T, García‐Franco JG, MacSwiney GMC. From dusk till dawn: nocturnal and diurnal pollination in the epiphyte Tillandsia heterophylla (Bromeliaceae). Plant Biol. 2016;18(1):37-45. Doi: https://doi.org/10.1111/plb.12319 Angelini C, Silliman BR. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree–epiphyte system. Ecology. 2014;95(1):185-196. Doi: https://doi.org/10.1890/13-0496.1 Aragón S, Ackerman JD. Does flower color variation matter in deception pollinated Psychilis monensis (Orchidaceae)? Oecologia. 2004;138(3):405-413. Doi: https://doi.org/10.1007/s00442-003-1443-9 Araujo A, Fischer E, Sazima M. Floração sequencial e polinização de três espécies de Vriesea (Bromeliaceae) na região de Juréia, sudeste do Brasil. Rev Bras Bot. 1994;17(2):113-118. Augspurger CK. Phenology, flowering synchrony, and fruit set of six neotropical shrubs. Biotropica. 1983;15(4):257-267. Doi: https://doi.org/10.2307/2387650 Augspurger CK. Morphology and dispersal potential of wind-dispersed diaspores of neotropical trees. Am J Bot. 1986;73(3):353-363. Doi: https://doi.org/10.1002/j.1537-2197.1986.tb12048.x Barve N, Martin CE, Peterson AT. Climatic niche and flowering and fruiting phenology of an epiphytic plant. AoB Plants. 2015;7:plv108. Doi: https://doi.org/10.1093/aobpla/plv108 Bencke CSC, Morellato LPC. Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Braz J Bot. 2002;25(3):269-275. Doi: https://doi.org/10.1590/S0100-84042002000300003 Benzing DH, Renfrow A. The mineral nutrition of Bromeliaceae. Bot Gaz. 1974;135(4):281-288. Doi: https://doi.org/10.1086/336762 Benzing DH. Germination and early establishment of Tillandsia circinnata Schlecht. (Bromeliaceae) on some of its hosts and other supports in southern Florida. Selbyana. 1978;5(1):95-106. Benzing DH. The population dynamics of Tillandsia circinnata (Bromeliaceae): cypress crown colonies in Southern Florida. Selbyana. 1981;5(3):256-263. Benzing DH. Vascular epiphytes: general biology and related biota. Cambridge UK: Cambridge University Press; 1990. 354 p. Doi: https://doi.org/10.1017/CBO9780511525438 Benzing DH. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim Change. 1998;39(2):519-540. Doi: https://doi.org/10.1023/A:1005312307709 Benzing D. Bromeliaceae: Profile of an adaptive radiation. Cambridge UK: Cambridge University Press. 2000. 675 p. Doi: https://doi.org/10.1017/CBO9780511565175 Bianchi MB, Vesprini JL. Contrasting breeding systems in six species of Tillandsia L. (Bromeliaceae) from woody areas of Santa Fe Province: Argentina. Plant Biosyst. 2014;148(5):956-964. Doi: https://doi.org/10.1080/11263504.2013.806965 Bonato RR, Muraro ND. Aspectos fenológicos e reprodutivos de Vriesea incurvata Gaudich (Bromeliaceae). Acta Sci Agron. 2006;28(2): 95-102. Doi: https://doi.org/10.4025/actascibiolsci.v28i2.1011 Borba EL, Braga PIS. Biologia reprodutiva de Pseudolaelia corcovadensis (Orchidaceae): melitofilia e autocompatibilidade em uma Laeliinae basal. Braz J Bot. 2003;26(4):541-549. Doi: https://doi.org/10.1590/S0100-84042003000400013 Boulter SL, Kitching RL, Howlett BG. Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J Ecol. 2006;94(2):369-382. Doi: https://doi.org/10.1111/j.1365-2745.2005.01084.x Brandt FB, Martinson GO, Conrad R. Bromeliad tanks are unique habitats for microbial communities involved in methane turnover. Plant Soil. 2017;410(1):167-179. Doi: https://doi.org/10.1007/s11104-016-2988-9 Buisson E, Alvarado ST, Stradic SL, Morellato LPC. Plant phenological research enhances ecological restoration. Restor Ecol. 2017;25(2):164-171. Doi: https://doi.org/10.1111/rec.12471 Buzato S, Sazima M, Sazima I. Hummingbird-pollinated floras at three atlantic forest. Biotropica. 2000;32(4b):824-841. Doi: https://doi.org/10.1111/j.1744-7429.2000.tb00621.x Canela MBF, Sazima M. Aechmea pectinata: a hummingbird-dependent bromeliad with inconspicuous flowers from the rainforest in south-eastern Brazil. Ann Bot. 2003;92(5):731-737. Doi: https://doi.org/10.1093/aob/mcg192 Cardelús C, Mack MC. The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecol. 2010;207:25-37. Doi: https://doi.org/10.1007/s11258-009-9651-y
/*ref*/Carranza-Quiceno JA, Estévez-Varón JV. Ecología de la polinización de Bromeliaceae en el dosel de los bosques neotropicales de montaña. Bol Cient Mus Hist Nat. 2008;12:38-47. Cascante‐Marín A, Trejos C, Alvarado R. Association between rainfall seasonality and the flowering of epiphytic plants in a Neotropical montane forest. Biotropica. 2017;49(6):912-920. Doi: https://doi.org/10.1111/btp.12478 Cascante-Marín A, Wolf JHD, Oostermeijer JGB. Wasp florivory decreases reproductive success in an epiphytic bromeliad. Plant Ecol. 2009;203(1):149-153. Doi: https://doi.org/10.1007/s11258-008-9522-y Castro Hernández JC, Wolf JHD, García-Franco JG, González-Espinosa M. The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Rev Biol Trop. 1999;47(4):763-773. Doi: https://doi.org/10.15517/rbt.v47i4.19233 Cervantes SE, Graham EA, Andrade JL. Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecol. 2005;179(1):107-118. Doi: https://doi.org/10.1007/s11258-004-5802-3 Chang C-T, Wang H-C, Huang C-Y. Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia. Environ Res Lett. 2013;8(4):1-11. Doi: https://doi.org/10.1088/1748-9326/8/4/045030 Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology. 1999; 80(5):1475-1494. Doi: https://doi.org/10.2307/176541 Cortés-Flores J, Hernández-Esquivel KB, González-Rodríguez A, Ibarra-Manríquez G. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: influence of phylogeny and abiotic factors. Am J Bot. 2016;104(1):39-49. Doi: https://doi.org/10.3732/ajb.1600305 Croat TB. Seasonal flowering behavior in Central Panama. Ann Mo Bot Gard. 1969;56(3):295-307. Croat TB. Phenological behavior of habit and habitat classes on Barro Colorado Island (Panama Canal Zone). Biotropica. 1975;7(4):270-277. Doi: https://doi.org/10.2307/2989739 da Silva Freitas L, Moreira LM, de Avila RS, Felestrino ÉB, Demarco D, de Sousa HC, et al. Reproductive phenology and floral visitors of a Langsdorffia hypogaea (Balanophoraceae) population in Brazil. Flora. 2017;233:51-57. Doi: https://doi.org/10.1016/j.flora.2017.02.023 de Araújo FP, Barbosa AAA, Oliveira PE. Floral resources and hummingbirds on an island of flooded forest in Central Brazil. Flora. 2011;206(9):827-835. Doi: https://doi.org/10.1016/j.flora.2011.04.001 de Freitas TG, de Souza CS, Aoki C, Arakaki LMM, Stefanello TH, Bagnatori SÂL, et al. Flora of Brazilian humid Chaco: composition and reproductive phenology. Check List. 2013;9(5):973-979. Doi: https://doi.org/10.15560/9.5.973 de Lampe MG, Bergeron Y, McNeil R, Leduc A. Seasonal flowering and fruiting patterns in tropical semi-arid vegetation of Northeastern Venezuela. Biotropica. 1992;24(1):64-76. Doi: https://doi.org/10.2307/2388474 del Coro Arizmendi MC, Ornelas JF. Hummingbirds and their floral resources in a tropical dry forest in Mexico. Biotropica. 1990; 22(2):172-180. Doi: https://doi.org/10.2307/2388410 Denny EG, Gerst KL, Miller-Rushing AJ, Tierney GL, Crimmins TM, Enquist CAF, et al. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. Int J Biometeorol. 2014;58(4):591-601. Doi: https://doi.org/10.1007/s00484-014-0789-5 Díaz IA, Sieving KE, Peña-Foxon M, Armesto JJ. A field experiment links forest structure and biodiversity: epiphytes enhance canopy invertebrates in Chilean forests. Ecosphere. 2012;3(1):art5. Doi: https://doi.org/10.1890/ES11-00168.1 Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake E, et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience. 2017;67(6):534-545. Doi: https://doi.org/10.1093/biosci/bix014 Dressler R. Phylogeny and classification of orchid family. Cambridge UK: Cambridge University Press; 1993. p. 13-58. Duarte AA, Filho JPL, Marques AR. Seed germination of bromeliad species from the campo rupestre: thermal time requirements and response under predicted climate-change scenarios. Flora 238;2018:119-28. Doi: https://doi.org/10.1016/j.flora.2017.05.016 Einzmann HJR, Beyschlag J, Hofhansl F, Wanek W, Zotz G. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants. 2015;7:plu073. Doi: https://doi.org/10.1093/aobpla/plu073 Ekholm A, Tack AJM, Bolmgren K, Roslin T. The forgotten season: the impact of autumn phenology on a specialist insect herbivore community on oak. Ecol Entomol. 2019;44(3):425-435. Doi: https://doi.org/10.1111/een.12719 Escobedo-Sarti J, Mondragón D. Flowering phenology of Catopsis compacta (Bromeliaceae), a dioecious epiphyte in an oak forest. Bot Sci. 2016;94(4):729-736. Doi: https://doi.org/10.17129/botsci.669 Fenner M. The phenology of growth and reproduction in plants. Perspect Plant Ecol Syst. 1998;1(1):78-91. Doi: https://doi.org/10.1078/1433-8319-00053 Flynn DFB, Wolkovich EM. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 2018;219(4):1353-1362. Doi: https://doi.org/10.1111/nph.15232 García-Franco JG, Rico-Gray VR. Biología reproductiva de Tillandsia deppeana Steudel (Bromeliaceae) en Veracruz, México. Brenesia. 1991;35:61-79. Gardner C. Inferences about pollination in Tillandsia (Bromeliaceae). Selbyana. 1986;9(1):76-87. Gentry AH, Dodson CH. Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard. 1987;74(2):205-233. Doi: https://doi.org/10.2307/2399395 Gezon ZJ, Inouye DW, Irwin RE. Phenological change in a spring ephemeral: implications for pollination and plant reproduction. Glob Chang Biol. 2016;22(5):1779-1793. Doi: https://doi.org/10.1111/gcb.13209 Guaraldo AC, Boeni BO, Pizo MA. Specialized seed dispersal in epiphytic cacti and convergence with mistletoes. Biotropica. 45(4):465-473. Doi: https://doi.org/10.1111/btp.12041 Hietz P, Winkler M, Cruz-Paredes L, Jiménez-Aguilar A. Breeding systems, fruit set, and flowering phenology of epiphytic bromeliads and orchids in a Mexican humid montane Forest. Selbyana. 2006;27(2):156-164. Doi: https://doi.org/10.2307/41760278 Hietz P. Fern adaptations to xeric environments. In: Mehltreter K, Walker LR, Sharpe JM, editors. Fern ecology. Cambridge UK: Cambridge University Press. 2010. p. 140-170. Doi: https://doi.org/10.1017/CBO9780511844898.006 Hoeber V, Weichgrebe T, Zotz G. Accidental epiphytism in the Harz Mountains, Central Europe. J Veg Sci. 2019;30:765-775. Doi: https://doi.org/10.1111/jvs.12776 Hood GR, Zhang L, Hu EG, Ott JR, Egan SP. Cascading reproductive isolation: Plant phenology drives temporal isolation among populations of a host-specific herbivore. Evolution. 2019;73(3):554-568. Doi: https://doi.org/10.1111/evo.13683 Hsu RC-C, Tamis WLM, Raes N, de Snoo GR, Wolf JHD, Oostermeijer G, et al. Simulating climate change impacts on forests and associated vascular epiphytes in a subtropical island of East Asia. Divers Distrib. 2012;18(4):334-347. Doi: https://doi.org/10.1111/j.1472-4642.2011.00819.x Johansson D. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec. 1974;59:1-136. Kebede M, Isotalo J. Flowering and fruiting phenology and floral visitation of four native tree species in the remnant moist Afromontane forest of Wondo Genet, south central Ethiopia. Trop Ecol. 2016;57(2):299-311. Kress WJ. The systematic distribution of vascular epiphytes: an update. Selbyana. 1986;9(1):2-22. Kudo G, Ida TY. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology. 2013;94(10):2311-2320. Doi: https://doi.org/10.1890/12-2003.1 Lasso E, Ackerman J. Flowering phenology of Werauhia sintenisii, a bromeliad from the Dwarf Montane Forest in Puerto Rico: an indicator of climate change? Selbyana. 2003;24(1):95-104. Lee P-H, Huang Y-M, Chiou WL. Fern Phenology. In: Fernández H, editor. Current advances in fern research. Switzerland: Springer International Publishing AG; 2018 p. 381-399. Doi: https://doi.org/10.1007/978-3-319-75103-0_18 Liebsch D, Mikich SB. Fenologia reprodutiva de espécies vegetais da Floresta Ombrófila Mista do Paraná, Brasil. Braz J Bot. 2009;32(2):375-391. Doi: https://doi.org/10.1590/S0100-84042009000200016 Lieth H. Introduction to phenology and the modelling of seasonality. In: Lieth H, editor. Phenology and seasonality modeling. Berlin Heidelberg: Springer-Verlag; 1974. p. 3-5. Doi: https://doi.org/10.1007/978-3-642-51863-8_1 Lobo JA, Quesada M, Stoner KE, Fuchs EJ, Herrerias-Diego Y, Rojas J, et al. Factors affecting phenological patterns of bombacaceous trees in seasonal forests in Costa Rica and Mexico. Am J Bot. 2003;90(7):1054-1063. Doi: https://doi.org/10.3732/ajb.90.7.1054 Lopezaraiza-Mikel M, Quesada M, Álvarez-Añorve M, Ávila-Cabadilla L, Martén-Rodríguez S, Calvo-Alvarado et al. Phenological patterns of tropical dry forests along latitudinal and successional gradients in the neotropics. In: Sánchez-Azofeita A, Powers JS, Fernandes GW, Quesada MT, editors. Tropical dry forests in the Americas, ecology, conservation, and management. Boca Raton: CRC Press; 2013. p. 119-146. Doi: https://doi.org/10.1201/b15417-10 Lugo AE, Scatena FN. Epiphytes and climate change research in the Caribbean: a proposal. Selbyana. 1992;13:123-130. Machado CG, Semir J. Fenologia da floração e biologia floral de bromeliáceas ornitófilas de uma área da Mata Atlântica do Sudeste brasileiro. Rev Bras Bot. 2006;29(1):163-174. Doi: http://dx.doi.org/10.1590/S0100-84042006000100014 Madison M. Vascular epiphytes: their systematic occurrence and salient features. Selbyana. 1977;2(1):1-13. Marler TE. Host Tree identity influences leaf nutrient relations of the epiphyte Dendrobium guamense Ames. Horticulturae. 2018;4(43):1-10. Doi: https://doi.org/10.3390/horticulturae4040043 Marques MCM, Roper JJ, Salvalaggio APB. Phenological patterns among plant life forms in a subtropical forest in Southern Brazil. Plant Ecology. 2004;173:203-213. Doi: https://doi.org/10.1023/B:VEGE.0000029325.85031.90 Marques AR, Filho JPL. Fenologia reprodutiva de espécies de bromélias na Serra da Piedade, MG, Brasil. Acta Bot Bras. 2008;22(2):417-424. Doi: https://doi.org/10.1590/S0102-33062008000200011 Marquis RJ. Phenological variation in the neotropical understory shrub Piper arielanum: causes and consequences. Ecology. 1988;69(5):1552-1565. Doi: https://doi.org/10.2307/1941653 McCall AC, Irwin RE. Florivory: the intersection of pollination and herbivory. Ecol Lett. 2006;9(12):1351-1365. Doi: https://doi.org/10.1111/j.1461-0248.2006.00975.x Mehltreter K, García-Franco JG. Leaf phenology and trunk growth of the deciduous tree fern Alsophila firma (Baker) D. S. Conant in a Lower Montane Mexican Forest. Am Fern J. 2008;98(1):1-13. Doi: https://doi.org/10.1640/0002-8444(2008)98[1:LPATGO]2.0.CO;2 Mehltreter K, Sharpe JM. Causes and consequences of the variability of leaf lifespan of ferns. Fern Gaz. 2013;196:193-202. Mendieta-Leiva G, Porada P, Bader MY. Interactions of Epiphytes with Precipitation Partitioning. In: Van Stan JT II, Gutmann E, Friesen J, editors. Precipitation Partitioning by Vegetation. Switzerland: Springer, Cham;2020. p. 133-146. Doi: https://doi.org/10.1007/978-3-030-29702-2_9 Menzel A, Sparks TH, Estrella N, Roy DB. Altered geographic and temporal variability in phenology in response to climate change. Global Ecol Biogeogr. 2006;15(5):498-504. Doi: https://doi.org/10.1111/j.1466-822X.2006.00247.x Miller-Rushing AJ, Høye TT, Inouye DW, Post E. The effects of phenological mismatches on demography. Phil Trans R Soc B. 2010;365(1555):3177-3186. Doi: https://doi.org/10.1098/rstb.2010.0148 Mo Y, Kearney M, Momen B. Drought‐associated phenological changes of coastal marshes in Louisiana. Ecosphere. 2017;8(5):e01811. Doi: https://doi.org/10.1002/ecs2.1811 Mondragon D, Calvo-Irabien LM. Seed dispersal and germination of the epiphyte Tillandsia brachycaulos (Bromeliaceae) in a tropical dry forest, Mexico. Southwest Nat. 2006;51(4):462-470. Doi: https://doi.org/10.1894/0038-4909(2006)51[462:SDAGOT]2.0.CO;2 Mondragón D, Valverde T, Hernández-Apolinar M. Population ecology of epiphytic angiosperms: A review. Trop Ecol; 2015;65(1):01-39. Morellato PC, Leitão-Filho HF. Reproductive phenology of climbers in a Southeastern Brazilian Forest. Biotropica. 1996;28(2):180-191. Doi: https://doi.org/10.2307/2389073 Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB. Phenology of Atlantic Rain Forest trees: a comparative study. Biotropica. 2000;32(4b):811-823. Doi: https://doi.org/10.1111/j.1744-7429.2000.tb00620.x Morellato LPC, Alberti LF, Hudson IL. Applications of circular statistics in plant phenology: a case studies approach. In: Hudson IL, Keatley MR, editors. Phenological research: methods for environmental and climate change analysis. Dordrecht: Springer Netherlands; 2010. p. 339-359. Doi: https://doi.org/10.1007/978-90-481-3335-2_16 Morellato LPC, Camargo MGG, Gressler E. A review of plant phenology in South and Central America. In: Schwartz MD. Phenology: an integrative environmental science. Dordrecht: Springer Netherlands; 2013. p. 91-113. Doi: https://doi.org/10.1007/978-94-007-6925-0_6 Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E, Camargo MGG, et al. Linking plant phenology to conservation biology. Biol Conserv. 2016;195:60-72. Doi: https://doi.org/10.1016/j.biocon.2015.12.033s Müller A, Correa MZ, Führ CS, Padoin TOH, de Quevedo DM, Schmitt JL. Neotropical ferns community phenology: climatic triggers in subtropical climate in Araucaria forest. Int J Biometeorol. 2019;63(10):1393-1404. Doi: https://doi.org/10.1007/s00484-019-01755-5 Nevling LI. The ecology of an Elfin Forest in Puerto Rico: the flowering cycle and an interpretation of its seasonality. J Arnold Arbor. 1971;52(4):586-613. Newstrom LE, Frankie GW, Baker HG. A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica. 1994;26(2):141-159. Doi: https://doi.org/10.2307/2388804 Nunes CEP, Peñaflor MFGV, Bento JMS, Salvador MJ, Sazima M. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula. Oecologia. 2016;182(4):933-946. Doi: https://doi.org/10.1007/s00442-016-3703-5 Orozco-Ibarrola OA, Flores-Hernández PS, Victoriano-Romero E, Corona-López AM, Flores-Palacios A. Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)? Bot J Linn Soc. 2015;177(1):50-65. Doi: https://doi.org/10.1111/boj.12225 Overton JMcC. Dispersal and Infection in Mistletoe Metapopulations. J Ecol. 1994;82(4):711-723. Doi: https://doi.org/10.2307/2261437 Palacios-Mosquera Y, Mondragón D, Santos-Moreno A. Vertebrate florivory of vascular epiphytes: The case of a bromeliad. Braz J Biol. 2019;79(2):201-207. Doi: https://doi.org/10.1590/1519-6984.176023 Parthibhan S, Kumar TS, Rao MV. Phenology and reintroduction strategies for Dendrobium aqueum Lindley–An endemic, near threatened orchid. J Nat Conserv. 2015;24:68-71. Doi: https://doi.org/10.1016/j.jnc.2014.11.003 Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, et al. Plant phenology and global climate change: Current progresses and challenges. Glob Change Biol. 2019;25(6):1922-1940. Doi: https://doi.org/10.1111/gcb.14619 Polgar CA, Primack RB. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol. 2011;191(4):926-941. Doi: https://doi.org/10.1111/j.1469-8137.2011.03803.x Prevéy J, Vellend M, Rüger N, Hollister RD, Bjorkman AD, Myers‐Smith IH, et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob Change Biol. 2017;23(7):2660-2671. Doi: https://doi.org/10.1111/gcb.13619 Primack RB. Relationships among flowers, fruits, and seeds. Annu Rev Ecol Evol Syst. 1987;18(1):409-430. Doi: https://doi.org/10.1146/annurev.es.18.110187.002205 Primack RB. Variation in the phenology of natural populations of Montane shrubs in New Zealand. J Ecol. 1980;68(3):849-862. Doi: https://doi.org/10.2307/2259460 Rafferty NE, CaraDonna PJ, Bronstein JL. Phenological shifts and the fate of mutualisms. Oikos. 2015;124:14-21. Doi: https://doi.org/10.1111/oik.01523 Ramírez N. Reproductive phenology, life-forms, and habitats of the Venezuelan Central Plain. Am J Bot. 2002;89(5):836-842. Doi: https://doi.org/10.3732/ajb.89.5.836 Ramírez N, Briceño H. Reproductive phenology of 233 species from four herbaceous–shrubby communities in the Gran Sabana Plateau of Venezuela. AoB Plants. 2011; plr014. Doi: https://doi.org/10.1093/aobpla/plr014 Ramírez-Martínez A, Mondragón D, Valverde T, Chávez-Servia JL. Spatial variation in host preference in the endangered epiphytic bromeliad Tillandsia carlos-hankii. Acta Oecol. 2018;92:75-84. Doi: https://doi.org/10.1016/j.actao.2018.08.008 Ranker TA, Haufler CH. Biology and evolution of ferns and lycophytes. Cambridge UK: Cambridge University Press; 2008. 502 p. Doi: https://doi.org/10.1017/CBO9780511541827 Rasmussen HN, Rasmussen FN. The epiphytic habitat on a living host: reflections on the orchid–tree relationship. Bot J Linn Soc. 2018;186(4):456-472. Doi: https://doi.org/10.1093/botlinnean/box085 Rathcke B, Lacey EP. Phenological patterns of terrestrial plants. Annu Rev Ecol Evol Syst. 1985;16:179-214. Doi: https://doi.org/10.1146/annurev.es.16.110185.001143 Reed PB, Pfeifer‐Meister LE, Roy BA, Johnson BR, Bailes GT, Nelson AA, et al. Prairie plant phenology driven more by temperature than moisture in climate manipulations across a latitudinal gradient in the Pacific Northwest, USA. Ecol Evol. 2019;9(6):3637-3650. Doi: https://doi.org/10.1002/ece3.4995 Reyes‐García C, Mejia‐Chang M, Griffiths H. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community. New Phytol. 2012;193(3):745-754. Doi: https://doi.org/10.1111/j.1469-8137.2011.03946.x Reyes‐García C, Mejia‐Chang M, Jones GD, Griffiths H. Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals. Plant Cell Environ. 2008;31(6):828-841. Doi: https://doi.org/10.1111/j.1365-3040.2008.01789.x Richardson AD, Andy Black T, Ciais P, Delbart N, Friedl MA, Gobron N, et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc Lond B Biol Sci. 2010;365(1555):3227-3246. Doi: https://doi.org/10.1098/rstb.2010.0102 Rivera G, Borchert R. Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium specimens. Tree Physiol. 2001;21(4):201-212. Doi: https://doi.org/10.1093/treephys/21.4.201 Romero GQ, Nomura F, Gonçalves AZ, Dias NYN, Mercier H, Conforto E de C, et al. Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach. Oecologia. 2010;162(4):941-949. Doi: https://doi.org/10.1007/s00442-009-1533-4 Sahagun-Godinez E. Trends in the phenology of flowering in the Orchidaceae of Western Mexico. Biotropica. 1996;28(1):130-136. Doi: https://doi.org/10.2307/2388778 Sakai S. Phenological diversity in tropical forests. Popul Ecol. 2001;43(1):77-86. Doi: https://doi.org/10.1007/PL00012018 Sakai S, Kitajima K. Tropical phenology: recent advances and perspectives. Ecol Res. 2019;34(1):50-54. Doi: https://doi.org/10.1111/1440-1703.1131 Sazima I, Buzato S, Sazima M. An assemblage of hummingbird‐pollinated flowers in a montane forest in southeastern Brazil. Plant Biol. 1995:109(2):149-160. Doi: https://doi.org/10.1111/j.1438-8677.1996.tb00555.x Sazima I, Buzato S, Sazima M. The Saw-billed Hermit Ramphodon naevius and its flowers in southeastern Brazil. J Ornithol. 1996;136(2):195-206. Doi: https://doi.org/10.1007/BF01651241 Seidl CM, Basham EW, Andriamahohatra LR, Scheffers BR. Bird’s nest fern epiphytes facilitate herpetofaunal arboreality and climate refuge in two paleotropic canopies. Oecologia. 2020;192(2): 297-309. Doi: https://doi.org/10.1007/s00442-019-04570-2 Sharpe JM, Mehltreter K. Ecological insights from fern population dynamics. In: Mehltreter K, Walker LR, Sharpe JM, editors. Fern ecology. Cambridge UK: Cambridge University Press. 2010. p. 61-98. Doi: https://doi.org/10.1017/CBO9780511844898.004 Sheldon KS, Nadkarni NM. Reproductive phenology of epiphytes in Monteverde, Costa Rica. Rev Biol Trop. 2015;63(4):1119-1126. https://doi.org/10.15517/rbt.v63i4.16583 Smith-Ramírez C, Armesto JJ. Flowering and fruiting patterns in the Temperate Rainforest of Chiloe, Chile₋ecologies and climatic constraints. J Ecol. 1994;82(2):353-365. Doi: https://doi.org/10.2307/2261303 Stevenson PR, Castellanos MC, Cortés AI, Link A. Flowering patterns in a seasonal tropical lowland forest in western Amazonia. Biotropica. 2008;40(5):559-567. Doi: https://doi.org/10.1111/j.1744-7429.2008.00417.x Stiles FG. Ecological and evolutionary implications of bird pollination. Integr Comp Biol. 1978;18(4):715-727. Doi: https://doi.org/10.1093/icb/18.4.715 Talavera S, Bastida F, Ortiz PL, Arista M. Pollinator attendance and reproductive success in Cistus libanotis L. (Cistaceae). Int J Plant Sci. 2001;162(2):343-352. Doi: https://doi.org/10.1086/319573 Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, et al. Emerging opportunities and challenges in phenology: a review. Ecosphere. 2016;7(8):e01436. Doi: https://doi.org/10.1002/ecs2.1436 Taylor A, Burns K. Radial distributions of air plants: a comparison between epiphytes and mistletoes. Ecology. 2016;97(4):819-825. Doi: https://doi.org/10.1890/15-1322.1 Texier N, Deblauwe V, Stévart T, Sonké B, Simo-Droissart M, Azandi L, et al. Spatio-temporal patterns of orchids flowering in Cameroonian rainforests. Int J Biometeorol. 2018;62(11):1931-1944. Doi: https://doi.org/10.1007/s00484-018-1594-3 Ticktin T, Mondragón D, Gaoue OG. Host genus and rainfall drive the population dynamics of a vascular epiphyte. Ecosphere. 2016;7(11):e01580. Doi: https://doi.org/10.1002/ecs2.1580 Toledo‐Aceves T, Wolf JHD. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an Oak Forest in Chiapas, Mexico. Biotropica. 2008;40(2):246-250. Doi: https://doi.org/10.1111/j.1744-7429.2007.00344.x Valencia-Díaz S, Flores-Palacios A, Rodríguez-López V, Ventura-Zapata E, Jiménez-Aparicio AR. Effect of host-bark extracts on seed germination in Tillandsia recurvata, an epiphytic bromeliad. J Trop Ecol. 2010;26(6):571-581. Doi: https://doi.org/10.1017/S0266467410000374 Valverde T, Bernal R. ¿Hay asincronía demográfica entre poblaciones locales de Tillandsia recurvata?: Evidencias de su funcionamiento metapoblacional. Bol Soc Bot Mex. 2010;(86):23-36. Doi: https://doi.org/10.17129/botsci.2318 van Dulmen A. Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. In: Linsenmair KE, Davis AJ, Fiala B, Speight MR, editores. Tropical Forest Canopies: Ecology and Management: Proceedings of ESF Conference, Oxford University. Dordrecht: Springer Netherlands; 2001. p. 73-85. Doi: https://doi.org/10.1007/978-94-017-3606-0_7 van Schaik CP, Terborgh JW, Wright SJ. The Phenology of Tropical Forests: Adaptive Significance and Consequences for Primary Consumers. Annu Rev Ecol Evol Syst. 1993;24(1):353-377. Doi: https://doi.org/10.1146/annurev.es.24.110193.002033 Van Stan JT, Pypker TG. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ. 2015;536:813-824. Doi: https://doi.org/10.1016/j.scitotenv.2015.07.134 Wagner K, Mendieta-Leiva G, Zotz G. Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB Plants. 2015;7:plu092. Doi: https://doi.org/10.1093/aobpla/plu092 Wallace BJ. The Australian vascular epiphytes: flora and ecology (Ph.D. thesis). New South Wales: University of New England; 1981. p. 2-222. Williams-Linera G, Meave J. Patrones fenológicos. In: Guariguata RM, Kattan GH, editores. Ecología y conservación de bosques neotropicales. San José CR: Libro Universitario Regional; 2002. p. 591-624. Wright SJ, Calderon O. Phylogenetic patterns among tropical flowering phenologies. J Ecol. 1995;83(6):937-948. Doi: https://doi.org/10.2307/2261176 Wu Y, Song L, Liu W, Liu W, Li S, Fu P, et al. Fog water is important in maintaining the water budgets of vascular epiphytes in an Asian Tropical Karst Forests during the dry season. Forests. 2018;9(5):2-14. Doi: https://doi.org/10.3390/f9050260 Zimmerman JK, Roubik DW, Ackerman JD. Asynchronous phenologies of a neotropical orchid and its euglossine bee pollinator. Ecology. 1989;70(4):1192-1195. Doi: https://doi.org/10.2307/1941389 Zimmerman JK, Olmsted IC. Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica. 1992;24(3):402-407. Doi: https://doi.org/10.2307/2388610 Zimmerman JK, Wright SJ, Calderón O, Pagan MA, Paton S. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol. 2007;23(2): 231-251. Doi: https://doi.org/10.1017/S0266467406003890 Zotz G, Hietz P. The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot. 2001;52(364):2067-2078. Doi: https://doi.org/10.1093/jexbot/52.364.2067 Zotz G. Vascular epiphytes in the temperate zones–a review. Plant Ecol. 2005;176(2):173-183. Doi: https://doi.org/10.1007/s11258-004-0066-5 Zotz G. Johansson revisited: the spatial structure of epiphyte assemblages. J Veg Sci. 2007;18(1):123-130. Doi: https://doi.org/10.1111/j.1654-1103.2007.tb02522.x Zotz G, Bader MY. Epiphytic Plants in a Changing World-Global: change effects on vascular and non-vascular epiphytes. In: Lüttge U, Beyschlag W, Büdel B, Francis D, editores. Progress in Botany. Berlin-Heidelberg: Springer; 2009. p. 147-70. Doi: https://doi.org/10.1007/978-3-540-68421-3_7 Zotz G. The systematic distribution of vascular epiphytes – a critical update. Bot J Linn Soc. 2013;171(3):453-481. Doi: https://doi.org/10.1111/boj.12010 Zotz G. Plants on Plants – The Biology of Vascular Epiphytes. Switzerland: Springer International Publishing; 2016. 282 p. Doi: https://doi.org/10.1007/978-3-319-39237-0
 
Rights Derechos de autor 2021 Acta Biológica Colombiana
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library