BASE GROWTH TEMPERATURE AND PHYLLOCHRON FOR KIKUYU GRASS (Cenchrus clandestinus; Poaceae)

Acta Biológica Colombiana

View Publication Info
 
 
Field Value
 
Title BASE GROWTH TEMPERATURE AND PHYLLOCHRON FOR KIKUYU GRASS (Cenchrus clandestinus; Poaceae)
Temperatura base de crecimiento y filocrono para el pasto kikuyo (Cenchrus clandestinus; Poacea
 
Creator Acero Camelo, Ruth Amanda
Molina, Manuel Ricardo Esteban
Parra Coronado, Alfonso
Fischer, Gerhard
Carulla Fornaguera, Juan Evangelista
 
Subject forraje tropical
modelos de crecimiento
Pennisetum clandestinum
tasa de aparición de hojas
Agronomía
fisiología de forrajes
growth models
leaf appearance rate
Pennisetum clandestinum
tropical forage
Agronomy
forage physiology
 
Description In order to estimate the base temperature (Bt) of growth through the appearance of leaves and calculate the phyllochron for kikuyu grass, three plots were established on three farms in the Provincia of Ubaté (Cundinamarca, Colombia) located at different altitudes (2560, 2640, 3143 m. a. s. l.). Measurements were made in four cycles in a period of eight months. The Bt was estimated by the least coefficient of variation method using a second order regression model and the model obtained was validated by the cross-validation method. The Bt values for the first, second, third and fourth leaf were 4.02, 3.68, 3.93, and 3.62 ° C, respectively. For the appearance of the first leaf, the kikuyu required more thermal time (TT) (97.5 accumulated growing degree days (AGDD)) than for the second (74.2 AGDD), third (73.8 AGDD) and fourth leaf (76.0 AGDD) (p<0.05). There were no differences in TT among farms (p> 0.05). There was a tendency to a greater number of days required to reach each leaf stage in the farm located at higher altitude and with lower mean temperature. The validation showed an adequate adjustment (r2 = 0.94) and a substantial concordance (CCC = 0.97) between the observed values and the predicted values for the estimated TT with the Bt value obtained for each leaf stage. The results of Bt for kikuyu grass obtained, will allow to make more precise predictions about the phyllochron and generate growth models close to reality.
Con el fin de estimar la temperatura base (Tb) de crecimiento a través de la aparición de hojas y calcular el filocrono para el pasto kikuyo, se establecieron tres parcelas en tres fincas de la provincia de Ubaté (Cundinamarca, Colombia) ubicadas a diferente altitud (2560, 2640, 3143 m. s. n. m.). Se realizaron cuatro ciclos de mediciones en un tiempo total de ocho meses. La Tb se estimó por el método de mínimo coeficiente de variación utilizando un modelo de regresión de segundo grado y el modelo obtenido se validó por el método de validación cruzada. La Tb para la primera, segunda, tercera y cuarta hoja fue 4,02, 3,68, 3,93 y 3,62 °C, respectivamente. El kikuyo requirió mayor tiempo térmico (TT) para la aparición de la primera hoja (97,5 grados día de crecimiento acumulados (GDCA)) que para la segunda (74,2 GDCA), tercera (73,8 GDCA) y cuarta hoja (76,0 GDCA) (p<0,05). No hubo diferencias en el TT entre fincas (p > 0,05). Hubo tendencia a un mayor número de días calendario requeridos para alcanzar cada estado de hoja en la finca ubicada a mayor altitud y con menor temperatura media. La validación mostró un adecuado ajuste (r2= 0,94) y una concordancia sustancial (CCC= 0,97) entre los valores observados y los valores predichos para el TT estimado con los valores de Tb obtenidos para cada estado de hoja. Los resultados de Tb de crecimiento del pasto kikuyo obtenidos permiten realizar predicciones más precisas sobre el filocrono y generar modelos de crecimiento cercanos a la realidad.
 
 
Publisher Universidad Nacional de Colombia - Sede Bogotá - Faculdad de Ciencias - Departamento de Biología
 
Date 2021-01-14
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistas.unal.edu.co/index.php/actabiol/article/view/83199
10.15446/abc.v26n2.83199
 
Source Acta Biológica Colombiana; Vol. 26 Núm. 2 (2021); 160 - 169
Acta Biológica Colombiana; Vol. 26 No. 2 (2021); 160 - 169
1900-1649
0120-548X
 
Language eng
 
Relation https://revistas.unal.edu.co/index.php/actabiol/article/view/83199/77716
/*ref*/Acharán F, Balocchi O, López C I. Filocrono, producción de fitomasa y calidad nutritiva de una pradera de Lolium perenne L./ Trifolium repens L. sometida a tres frecuencias e intensidades de defoliación. Agro Sur. 2009; 37(2): 81-90. Doi: https://doi.org/10.4206/agrosur.2009.v37n2-02
/*ref*/Andrade SA, Santos PM, Pezzopane JRM, de Araujo LC, Pedreira BC, Pedreira CGS, Marin FR, Lara MAS. Simulating tropical forage growth and biomass accumulation: an overview of model development and application. Grass Forage Sci. 2016; 71: 54-65. Doi: https://doi.org/10.1111/gfs.12177
/*ref*/Bernal J, Espinosa J. Manual de nutrición y fertilización de pastos. Quito, Ecuador: International Plant Nutrition Institute; 2003. 94 p.
/*ref*/Chaves GG, Cargnelutti FA, Alves BM, Lavezo A, Wartha CA, Uliana DB, Pezzini RV, Kleinpaul JA, Neu IMM. Phyllochron and leaf appearance rate in oat. Bragantia. 2017; 76(1): 73-81. Doi: http://doi.org 10.1590/1678-4499.090
/*ref*/Colabelli M, Agnusdei M, Mazzanti A, Labreveux M. El proceso de desarrollo y crecimiento de gramíneas forrajeras como base para el manejo de la defoliación. Boletín 148. Secretaria de Agricultura, Ganadería, Pesca y Alimentación. Buenos Aires, Argentina: Instituto Nacional de Tecnología Agropecuaria INTA;1998. 1-17. p
/*ref*/Colman RL, O´Neill GH. Seasonal variation in the potential herbage production and response to nitrogen by kikuyu grass (Pennisetum clandestinum). J Agric Sd Camb. 1978; 91(1): 81-90. Doi: https://doi.org/10.1017/S0021859600056641
/*ref*/da Silva EA, da Silva WJ, Barreto AC, Barbosa de Oliveira Junior A, Paes JMV, Ruas JRM, Queiroz DM. Dry matter yield, thermal sum and base temperatures in irrigated tropical forage plants. R Bras Zootec. 2012; 41(3):574-582. Doi: https://doi.org/10.1590/S1516-35982012000300014
/*ref*/Fonseca C, Balocchi O, Keim JP, Rodríguez C. Efecto de la frecuencia de defoliación en el rendimiento y composición nutricional de Pennisetum clandestinum Hochst. ex Chiov. Agro Sur. 2016; 44 (3): 67-76. Doi: https://doi.org/10.4206/agrosur.2016.v44n3-07
/*ref*/Fulkerson WJ, Donaghy DJ. Plant-soluble carbohydrate reserves and senescence – key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Aust J Esp Agr. 2001; 41:261- 275. Doi: https://doi.org/10.1071/EA00062
/*ref*/Fulkerson WJ, Slack K, Havilah E. The effect of defoliation interval and height on growth and herbage quality of kikuyu grass (Pennisetum clandestinum). Trop Grasslands. 1999; 33:138-145.
/*ref*/Heady H, Child R. Rangeland ecology and management. Oxford UK: Westview Press;1994. p. 519.
/*ref*/Ivory DA, Whiteman PC. Effect of temperature on growth of five subtropical grasses. II. Effect of low night temperature. Aust J Plant Physiol. 1978; 5(2): 149-157. Doi: https://doi.org/10.1071/PP9780149
/*ref*/Giraldo-Cañas D. Las gramíneas en Colombia riqueza, distribución, endemismo, invasión, migración, usos y taxonomías populares. Bogotá D.C., Colombia: Universidad Nacional de Colombia; 2013. p. 73.
/*ref*/Herrero M, Fawcett RH, Silveira V, Busqué J, Bernués A, Dent JB. Modelling the growth and utilisation of kikuyu grass (Pennisetum clandestinum) under grazing. 1. Model definition and parameterization. Agric. Syst. 2000a; 65(2):73-97. Doi: https://doi.org/10.1016/S0308-521X(00)00028-7
/*ref*/Herrero M, Fawcett RH, Dent JB. Modelling the growth and utilisation of kikuyu grass (Pennisetum clandestinum) under grazing. 2. Model validation and analysis of management practices. Agric. Syst. 2000b; 65:99-111. Doi: https://doi.org/10.1016/S0308-521X(00)00029-9
/*ref*/Instituto de Hidrología, Meteorología y Estudios Ambientales. (s.f.). Sistema de información ambiental. Reporte estación 24015380 Carmen de Carupa 2010 a 2013. http://dhime.ideam.gov.co/atencionciudadano/.
/*ref*/Jones RR. Efecto del clima, el suelo y el manejo del pastoreo en la producción y presistencia del germoplasma forrajero tropical. In: Paladines O, Lascano C. Germoplasma forrajero bajo pastoreo en pequeñas parcelas. Red internacional de evaluación de pastos tropicales. Cali, Colombia: CIAT; 1983. p. 11-31.
/*ref*/Kiniry JR, Kim S, Williams AS, Lock TR, Kallenbach LR. Simulating bimodal tall fescue growth with a degree-day-. based process-oriented plant model. Grass Forage Sci. 2018;00:1–8.
/*ref*/Lemaire G, Da Silva SC, Agnusdei M, Wade M, Hodgson J. Interactions between leaf lifespan and defoliation frequency in temperate and tropical pastures: a review. Grass Forage Sci. 2009; 64: 341–353. Doi: https://doi.org/10.1111/j.1365-2494.2009.00707.x
/*ref*/Lemaire G. Ecophysiology of grasslands: dynamic aspects of forage plant populations in grazed swards. In: International Grassland Congress, São Pedro. Proceedings São Pedro: Fundação de Estudos Agrários Luiz de Queiroz. 2001. p.29-37.
/*ref*/Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45 (1): 255–268. Doi: http://doi.org 10.2307/2532051
/*ref*/Marais JP. Factors affecting the nutritive value of Kikuyu grass (Pennisetum clandestinum)- A review. Trop Grasslands. 2001;35: 65-84.
/*ref*/Marengo JA, Pabón JD, Díaz A, Rosas G, Ávalos G, Montealegre E, Villacis M, Solman S, Rojas M. Climate change: evidence and future scenarios for the Andean region. In: Herzog S, Martínez R, Jorgensen P, Tiessen H (eds). Inter-American Institute for Global Change Research (IAI) – Scientific Committee on Problems of the Environment (SCOPE) Publishers. p.110-127.
/*ref*/Martínez BR, Martínez RN, Martínez Martínez M. Diseño de Experimentos en Ciencias Agropecuarias y Biológicas con SAS, SPSS, R y STATISTIX. Tomo I. Bogotá. D.C., Colombia: Fondo Nacional Universitario; 2011. p. 305-333.
/*ref*/Mila A, Corredor Sánchez G. Evaluación de la composición botánica de una pradera de Kikuyo (Pennisetum clandestinum) recuperada mediante escarificación mecánica y fertilización con compost. Rev Corpoica. 2001; 5(1):70-75. Doi: https://doi.org/10.21930/rcta.vol5_num1_art:28
/*ref*/Moreno LSB, Pedreira CGS, Boote KJ, Alves RR. Base temperature determination of tropical Panicum spp. grasses and its effects on degree-day-based models. Agric. For. Meteorol. 2014; 186:26–33. Doi. https://doi.org/10.1016/j.agrformet.2013.09.013
/*ref*/Montaldi RE. Morfogénesis vegetal. Una mini revisión. Agriscientia. 1992;9(1):31-36.
/*ref*/Moot DJ, Matthew C, Kemp PD. Growth of pastures and supplementary crops. In: Rattray PV, Brookes IM, Nicol AM. Pasture and supplements for grazing animals. Ocassional Publication No. 14. Hamilton, New Zealand: New Zealand Society of Animal Production; 2007. p. 13-22.
/*ref*/Muscolo A, Panuccio MR, Eshel A. Ecophysiology of Pennisetum clandestinum: a valuable salt tolerant grass. Environ Exp Bot. 2013; 92: 55-63. Doi: https://doi.org/10.1016/j.envexpbot.2012.07.009
/*ref*/Ochoa RH. Anotaciones sobre pastos. Revista Facultad Nacional de Agronomía Medellín.1941;4 (11): 1144-1149.
/*ref*/Parra-Coronado A, Fischer G, Chaves-Cordoba B. Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biol Colomb. 2015; 20(1): 163-173. Doi: http://dx.doi.org/10.15446/abc.v20n1.43390.
/*ref*/Pérez C, Nicklin C, Dangles O, Vanek S, Sherwood S, Halloy S, Garrett K, Forbes G. Climate change in the high Andes: implications and adaptation strategies for small-scale farmers. Int J Environ Cult Econ Soc Sustainability. 2010;6(5):71-88. Doi: https://doi.org/10.18848/1832-2077/CGP/v06i05/54835
/*ref*/Perez Martinez LV, Melgarejo LM. Photosynthetic performance and leaf water potential of gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta biol. Colomb. 2015;20(1):183-194. Doi: http://dx.doi.org/10.15446/abc.v20n1.42196
/*ref*/Romano G, Schaumberg A, Piepho HP, Bodner A, Peratoner G. Optimal base temperature for computing growing degree-day sums to predict forage quality of mountain permanent meadow in South Tyrol. Grassland Science in Europe-EGF at 50: the future of European Grasslands. 2014; 9:655-658.
/*ref*/Ruml M, Vuković A, Milatović D. Evaluation of different methods for determining growing degree-day thresholds in apricot cultivars. Int J Biometeorol. 2010; 54:411-422. Doi: https://doi.org/10.1007/s00484-009-0292-6
/*ref*/Salazar-Gutiérrez MR, Johnson J, Chaves-Cordoba B, Hoogenboom G. Relationship of base temperature to development of winter wheat. Int J Plant Prod. 2013; 7(4):741-762.
/*ref*/Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS, et al. Photosynthetic response of plants under different abiotic stresses: A review. J Plant Growth Regul 2020; 39:509–531. Doi: https://doi.org/10.1007/s00344-019-10018-x
/*ref*/Tedeschi LO. Assesment of the Adequacy of Mathematical Models. Workshop on mathematical model analysis and evaluation. Sassari, Italy: Cornell University; 2004. p. 11.
/*ref*/Tripathi A, Tripathib DK, Chauhana DK, Kumar N, Singh GS. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric Ecosyst Environ. 2016; 216:356-373. Doi: https://doi.org/10.1016/j.agee.2015.09.034
/*ref*/Wilhelm W, McMaster GS. Phyllochron in grass development and growth en: Symposium on the Phyllochron. Crop Science. 1995; 35(19: 1-3. Doi: https://doi.org/10.2135/cropsci1995.0011183X003500010001x
/*ref*/Yang S, Logan J, Coffey DL. Mathematical formulae for calculating the base temperature for growing degree days. Agric For Meteorol. 1995; 74(1-2):61-74. Doi: https://doi.org/10.1016/0168-1923(94)02185-M
 
Rights Derechos de autor 2021 Acta Biológica Colombiana
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library