Penerapan Data Mining Prediksi Nilai UN Siswa SMP Menggunakan Metode Naive Bayes

INFORMATIKA : JURNAL INFORMATIKA, MANAJEMEN DAN KOMPUTER

View Publication Info
 
 
Field Value
 
Title Penerapan Data Mining Prediksi Nilai UN Siswa SMP Menggunakan Metode Naive Bayes
 
Creator jannah, miftahul; Dosen AMIK Mitra Gama
 
Description Examination National (UN) is conducted every year at all levels of education one SMP N 8 Mandau. The data of Examination National (UN) of students in SMP N 8 Mandau each year increases and is stored in the form of Soft file and Hard file. From the last few years the value of students UN in SMP N 8 is not stable. High and low the value of students UN greatly affect the quality of schools. To overcome this required a data mining technique with naive bayes method in predicting the value of UN students based on student data of 2016 and 2017. Of the 10 test data get predicted 7 people matching the data in 2017. So it has an accuracy of 70%. So this method can be applied in predicting the value of future UN students.
 
Publisher STMIK DUMAI
 
Contributor
 
Date 2020-12-14
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

 
Format application/pdf
 
Identifier http://www.ejournal.stmikdumai.ac.id/index.php/path/article/view/220
10.36723/juri.v12i2.220
 
Source I N F O R M A T I K A; Vol 12, No 2 (2020): DESEMBER 2020; 1 - 6
2580-3042
1979-0694
 
Language eng
 
Relation http://www.ejournal.stmikdumai.ac.id/index.php/path/article/view/220/124
http://www.ejournal.stmikdumai.ac.id/index.php/path/article/downloadSuppFile/220/71
 
Rights Copyright (c) 2020 I N F O R M A T I K A
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library