Emergent gravity: The thermodynamic key of space-time?

CIENCIA ergo-sum

View Publication Info
 
 
Field Value
 
Title Emergent gravity: The thermodynamic key of space-time?
Gravedad emergente: ¿La llave termodinámica del espacio-tiempo?
 
Creator Sánchez Hernández, Luis Miguel
 
Description We consider some aspects of the inciting relation between gravity and thermodynamics and describe how this has led to propose that gravity is not a fundamental interaction, but an emergent phenomenon with a statistical thermodynamic origin. To develop this idea, first, we briefly review the main aspects of black hole thermodynamics and the Unruh effect. Then, we present the work of T. Jacobson and outline the idea proposed by E. P. Verlinde that gravity is an entropic force. Finally, we discuss some of the consequences that follow from considering gravity as an emergent phenomenon and how this new concept may be important to solve some problems that current gravity models have failed to solve. 
Se exponen algunos aspectos de la incitante relación entre gravedad y termodinámica y cómo ésta ha llevado a proponer que la gravedad es un fenómeno emergente de origen termodinámico-estadístico más que una interacción fundamental. Para desarrollar esta idea, se presenta una breve revisión de los aspectos principales de la termodinámica de agujeros negros y el efecto Unruh. Después, se discute el trabajo de T. Jacobson y se esboza la noción de gravedad como fuerza entrópica propuesta por E. P. Verlinde. Finalmente, se discuten algunas implicaciones que resultan al considerar la gravedad como fenómeno emergente, en particular cómo este nuevo concepto puede ser importante para resolver algunos problemas que los modelos actuales de gravedad no han logrado solucionar. 
 
Publisher Universidad Autónoma del Estado de México
 
Date 2020-08-17
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
text/html
application/zip
 
Identifier https://cienciaergosum.uaemex.mx/article/view/12930
10.30878/ces.v27n4a5
 
Source CIENCIA ergo-sum; Vol. 27 Núm. 4 (2020): Número especial "Retos de la física no lineal"
CIENCIA ergo-sum; Vol. 27 Núm. 4 (2020): Número especial "Retos de la física no lineal"
2395-8782
1405-0269
 
Language spa
 
Relation https://cienciaergosum.uaemex.mx/article/view/12930/11222
https://cienciaergosum.uaemex.mx/article/view/12930/11255
https://cienciaergosum.uaemex.mx/article/view/12930/11256
/*ref*/Alsing, P. M., & Milonni, P. W. (2004). Simplified derivation of the Hawking-Unruh temperature for an accelerated observer in vacuum. American Journal of Physics, 72, 1524-1529. arXiv:quantph/0401170v2.
/*ref*/Bekenstein, J. D. (1972). Black holes and the second law. Letters Nuovo Cimento, 4, 737.
/*ref*/Bekenstein, J.D. (1973). Black holes and entropy. Physical Review D, 7, 2333.
/*ref*/Brustein, R., & Hadad, M. (2009). Einstein equations for generalized theories of gravity and the thermodynamic relation dQ = T dS are equivalent. Physical Review Letters, 103, 101301.
/*ref*/Cai, R. G., & Kim, S. P. (2005). First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker Universe. Journal of High Energy Physics, 2, [hep-th/0501055].
/*ref*/Callen, H. B. (1985). Thermodynamics and an introduction to thermostatics. John Wiley and Sons Inc.
/*ref*/Carter, B., Hawking, S. W., & Bardeen, J. M. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31, 161-170.
/*ref*/Chaichian, M., Oksanen, M., & Tureanu, A. (2011). On gravity as an entropic force. Physics Letters B, 702, 419-42. arXiv:1104.4650 [hep-th].
/*ref*/Elizalde, E. y Silva, P. J. (2008). f(R) gravity equation of state. Physical Review D, 78, 061501.
/*ref*/Fei-Quan Tu, Yi-Xin Chen, Bin Sun, & You-Chang Yang. (2018). Accelerated expansion of the universe based on emergence of space and thermodynamics of the horizon. Physics Letters B, 784, 411. arXiv:1707.06461 [gr-qc].
/*ref*/Granger, A. (2010). Thermodynamic gravity and the emergence of space with geometry (QFFF Dissertation). London: Imperial College. https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/dissertations/2010/Andrew-Granger-Dissertation.pdf
/*ref*/Hawking, S. W. (1976). Black holes and thermodynamics. Physical Review D, 13, 191-197.
/*ref*/Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43, 199-220.
/*ref*/Jacobson, T. (1995). Thermodynamics of space-time: The Einstein equation of state. Physical Review Letters, 75, 1260-1263.
/*ref*/Kobakhidze, A. (2011). Gravity is not an entropic force. Physical Review D, 83, 021502. arXiv:1009.5414 [hep-th]
/*ref*/Lopez-Monsalvo, C. S., Quevedo, H., & Bravetti, A. (2015). Maximally symmetric spacetimes emerging from thermodynamic fluctuations. arXiv:1503.08358v2 [gr-qc].
/*ref*/Moustos, D. (2017). Gravity as a thermodynamic phenomenon (M. Sc. Thesis). Greece: University of Patras. arXiv:1701.08967v1 [gr-qc].
/*ref*/Müller, I. (2007). A history of thermodynamics: The doctrine of energy and entropy. New York: Springer.
/*ref*/Nesvizhevsky, V. V., Boerner, H. G., & Gagarsky, A. M. (2002). Quantum states of neutrons in the Earth’s gravitational field. Nature, 415, 297-299
/*ref*/Padmanabhan, T. (2004). Gravity as elasticity of spacetime: A paradigm to understand horizon thermodynamics and cosmological constant. International Journal of Modern Physics, 13, 2293-2298. arXiv:gr-qc/0408051.
/*ref*/Padmanabhan, T. (2005). Holographic gravity and the surface term in the Einstein-Hilbert action. Brazilian Journal of Physics, 35, 362. arXiv:gr-qc/041206810]
/*ref*/Padmanabhan, T. (2010). Thermodynamical aspects of gravity: New insights. Reports on Progress in Physics, 73, 046901. arXiv:0911.5004v2 [gr-qc].
/*ref*/Padmanabhan, T. (2016). Journal of Physics: Conference Series, 701, 012018
/*ref*/Quevedo, H. (2007). Geometrothermodynamics. Journal of Mathematical Physics, 48, 013506.
/*ref*/Sánchez, A., Vázquez, A., & Quevedo, H. (2015). Relativistic like structure of classical thermodynamics. General Relativity and Gravitation, 47(4), 36.
/*ref*/Smolin, L. (2004). Atoms of space and time. Scientific American, 290(1), 66-75.
/*ref*/Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36, 6377. arXiv:hep-th/9409089.
/*ref*/Unruh, W.G. (1976). Notes on black hole evaporation. Physical Review D, 14, 870.
/*ref*/Verlinde, E. P. (2010). On the origin of gravity and the laws of newton. arXiv:1001.0785.
/*ref*/Verlinde, E. P. (2016). Emergent gravity and the dark universe. arXiv:1611.02269
/*ref*/Visser, M. J. (2011). Conservative entropic forces. Journal of High Energy Physics, 140.
/*ref*/Wald, R. M. (1984). General relativity. Chicago: The University of Chicago Press.
/*ref*/Wald, R. M. (1999). Gravitation, thermodynamics, and quantum theory. Classical and Quantum Gravity,16, A177-A190. arXiv:gr-qc/9901033.
 
Rights Derechos de autor 2020 CIENCIA ergo-sum
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library