Lagrangian models for the simulation of fluids and their application to marine hydrodynamics

CIENCIA ergo-sum

View Publication Info
 
 
Field Value
 
Title Lagrangian models for the simulation of fluids and their application to marine hydrodynamics
Modelos Lagrangianos para la simulación de fluidos y su aplicación a la hidrodinámica marina
 
Creator Sánchez-Mondragón, Joel
 
Description The Semi-Implicit Particle Movement (MPS) method, which is one of the most representative models of the Lagrangian models used in fluid simulation, is described in this work. Moreover, advantages and disadvantages of the MPS method are described: from the version based on the particle number density, the velocity divergence and the weakly compressible versions. Furthermore, to demonstrate the method capabilities, these versions are compared on the basis of the classical two dimensional dam-breaking problem. From these results, the differences on the pressure field distribution on several time steps and the pressure time histories on the wall impact zone are analyzed. 
Se describe el método de movimiento de partículas semi-implícito (MPS), el cual es uno de los modelos Lagrangianos más representativos usados en la simulación de fluidos. Además, se especifican las ventajas y desventajas de las versiones del método MPS: una basada en la densidad de partículas, otra en la divergencia de la velocidad y la débilmente compresible. Adicionalmente, para demostrar la capacidad del método, estas versiones se aplican en el problema clásico de rompimiento de presa en dos dimensiones. De estos resultados, se comparan las distribuciones del campo de presiones en varias etapas de la simulación y el histórico de la presión de impacto en la pared del contenedor por la colisión con el fluido. 
 
Publisher Universidad Autónoma del Estado de México
 
Date 2020-07-13
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
text/html
inode/x-empty
 
Identifier https://cienciaergosum.uaemex.mx/article/view/12727
10.30878/ces.v27n4a4
 
Source CIENCIA ergo-sum; Vol. 27 Núm. 4 (2020): Número especial "Retos de la física no lineal"
CIENCIA ergo-sum; Vol. 27 Núm. 4 (2020): Número especial "Retos de la física no lineal"
2395-8782
1405-0269
 
Language spa
 
Relation https://cienciaergosum.uaemex.mx/article/view/12727/11159
https://cienciaergosum.uaemex.mx/article/view/12727/11166
https://cienciaergosum.uaemex.mx/article/view/12727/11167
/*ref*/Ataie-Ashtiani, B., & Farhadi, L. (2006). A stable moving-particle semi implicit method for free surfaces flows. Fluid Dyn. Res., 38, 241-256.
/*ref*/Ataie-Ashtiani, B., Shobeyri, G., & Farhadi, L. (2006). Modified incompressible SPH method for simulating free surface problems. Fluid Dyn. Res., 40(9), 637-661.
/*ref*/Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P. (1996). Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Eng., 139, 3-47.
/*ref*/Dalrymple, R. A., & Rogers, B. D. (2006). Numerical modeling of water waves with the SPH method. Coast. Eng., 53(2), 141-147.
/*ref*/Edmond, Y. M. L., & Shao, S. (2002). Simulation of near-shore solitary wave mechanics by an incompressible SPH method. App. Ocean Res., 24(5), 275-286.
/*ref*/Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics-Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc., 181, 375-389.
/*ref*/Gingold, R. A., & Monaghan, J. J. (1982). Kernel estimates as a basis for general particle methods in hydrodynamics. J. Comput. Phys., 46, 429-453.
/*ref*/Gotoh, H., (2009). Lagrangian particle method as advanced technology for numerical wave flume. Int. J. Offshore Polar Eng., 19(3), 161-167.
/*ref*/Gotoh, H., Ikari, H., Memita, T., & Sakai, T. (2005). Lagrangian particle method of wave overtopping on a vertical seawall. Coastal Eng. J., 47, 157-181.
/*ref*/Gotoh, H., & Khayyer, A. (2016). Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy, 2(3), 251-278.
/*ref*/Gotoh, H., & Khayyer, A. (2018). On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Eng. J., 60(1), 79-103.
/*ref*/Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS Method-Lagrangian flow model for hydraulic engineering. Comput. Fluid Dyn. J., 9, 339-347.
/*ref*/Jaime-Ledezma, L. E., Sanchez-Mondragon, J., Vazquez-Hernandez, A. O., Morales-Viscaya, J. A., & Ochoa-Ruiz, G. (2019). Simulation of breaking waves on slop beaches integrating the MPS method into Iwagaki wave theory. J. Braz. Soc. Mech. Sci. Eng., 41(170).
/*ref*/Khayyer, A., & Gotoh, H. (2008). Development of CMPS method for accurate water-surface tracking in breaking waves. Coastal Eng. J., 50(2), 179-207.
/*ref*/Khayyer, A., & Gotoh, H. (2009). Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Eng., 56, 419-440.
/*ref*/Khayyer, A., & Gotoh, H. (2010). A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Appl. Ocean Res., 32, 124-131.
/*ref*/Khayyer, A., & Gotoh, H. (2011). Enhancement of stability and accuracy of the moving particle semi-implicit method. J. Comput. Phys., 230, 3093-3118.
/*ref*/Kolahdoozan, M., Ahadi, M. S., & Shirazpoor, S. (2014). Effect of turbulence closer models on the accuracy of MPS method for the viscous free surface flow. Sci. Iran., 21(4), 1217-1230.
/*ref*/Kondo, M., & Koshizuka, S. (2011). Improvement of stability in Moving Particle Semi-implicit method. Int. J. Numer. Meth. Fluids., 65, 638-654.
/*ref*/Koshizuka, S., Nobe, A., & Oka, Y. (1998). Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Meth. Fluids., 26, 751-769.
/*ref*/Koshizuka, S., & Oka, Y. (1996). Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng., 123, 421-434.
/*ref*/Koshizuka, S., Suzuki, Y., & Harada, T. (2008). Multi-physics simulation for micro fluidic devices using Moving Particle Semi-implicit method. WCCM8 and ECCOMAS 2008, June 30-July 5, Venice.
/*ref*/Kouh, J. S., Chien, H. P., Chang, C. C., & Chen Y. J. (2007). Simulation of a ship with partially filled tanks rolling in waves by applying Moving Particle Semi-implicit method. International Conference on Engineering Education, September 3-September 7.
/*ref*/Lee, B. H., Park, J. C., Kim, M. H., & Hwang, S. C. (2011). Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput. Methods Appl. Mech. Eng., 200, 1113-1125.
/*ref*/Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J., 82, 1013-1024.
/*ref*/Sahebari, A. J., Jin, Y. C., & Shakibaeinia, A. (2011). Flow over sills by the MPS mesh-free particle method. J. Hydraul. Res., 49(5), 649-656.
/*ref*/Sanchez-Mondragon, J. (2016). On the stabilization of unphysical pressure oscillations in MPS method simulations. Int. J. Numer. Methods Fluids, 82, 471-492.
/*ref*/Sanchez-Mondragon, J., & Vazquez-Hernandez, A. O. (2018). Solitary wave collisions by double-dam-broken simulations with the MPS method. Eng. Comput., 35(1), 53-70.
/*ref*/Shakibaeinia, A., & Jin, Y. C. (2010). A weakly compressible MPS method for modeling of open-boundary free-surface flow. Int. J. Numer. Methods Fluids, 63(10), 1208-1232.
/*ref*/Shao, S., (2006). Simulation of breaking wave by SPH method coupled with model. J Hydraul. Res., 44(3), 338-349.
/*ref*/Shao, S. D., & Lo, E. Y. M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour., 26(7), 787-800.
/*ref*/Shibata, K., Koshizuka, S., Sakai, M., & Tanizawa, K. (2012). Lagrangian simulations of ship-wave interactions in rough seas. Ocean Eng., 42, 13-25.
/*ref*/Shibata, K., Koshizuka, S., Sakai, M., & Tanizawa, K. (2011). Transparent boundary condition for simulating nonlinear water waves by a particle method. Ocean Eng., 38, 1839-1848.
/*ref*/Shibata, K., Koshizuka, S., & Tanizawa, K. (2009). Three-dimensional numerical analysis of shipping water onto a moving ship using a particle method. J. Mar. Sci. Technol., 14, 214-227.
/*ref*/Sueyoshi, M., Zdravko, R., Kishev, R., & Kashiwagi, M. (2005). A particle method for inmpulsive loads caused by violent sloshing. Abstract for the 20th Int. Workshop on water waves and floating bodies, Spitsbergen (Norway), 29th May- 1st June.
/*ref*/Tanaka, M., & Masunaga, T., (2010). Stabilization and smoothing of pressure in MPS method by Quasy-Compressibility. J. Comput. Phys., 229, 4279-4290.
/*ref*/Xu, T., & Jin, Y. C. (2016). Improvements for accuracy and stability in a weakly-compressible particle method. Comput. Fluids, 137, 1-14.
/*ref*/Zhu, X. S., Cheng, L., Lu, L., & Teng, B. (2011). Implementation of the moving particle semi-implicit method on GPU. Science China, 54(3), 523-532.
 
Rights Derechos de autor 2020 CIENCIA ergo-sum
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library