Mathematical modeling of a stirred tank reactor with dispersed catalyst to obtain methyl oleate from triolein

CIENCIA ergo-sum

View Publication Info
 
 
Field Value
 
Title Mathematical modeling of a stirred tank reactor with dispersed catalyst to obtain methyl oleate from triolein
Modelación matemática de un reactor de tanque agitado con catalizador disperso para la obtención de metil oleato a partir de trioleína
 
Creator Pérez Robert, Alondra I.
Elizalde Martínez, ; Ignacio
Monterrubio Badillo, ; Ma. del Carmen
Mederos Nieto, ; Fabián S.
Vázquez Medina, ; Rubén
 
Description The mathematical modeling of a three-phase reactor with dispersed phase catalyst for production of methyl oleate was carried out. Mass balances were used at the reactor level as well as the fluid-catalyst interphase to represent the operation system. The effect of type, particle size and catalyst concentration, as well as space-time and arrangement of reactors in series were examined. The purity of the triglyceride in the feeding was also investigated. The factors that most affected the reactor behavior quantitatively were the concentration of the catalyst, and its type, as well as the series arrangement of two reactors at constant space-time. 
Se realizó la modelación matemática de un reactor trifásico con catalizador en fase dispersa para la producción de metil oleato. Se utilizaron balances de materia a nivel reactor, así como entre fase fluida-catalizador para representar la operación del sistema. Se investigó el efecto del tipo, tamaño de partícula y concentración del catalizador, así como espacio-tiempo y arreglo de reactores en serie. Asimismo, se investigó sobre la pureza del triglicérido en la alimentación. Los factores que más afectaron cuantitativamente el desempeño del reactor fueron la concentración del catalizador, su tipo y el arreglo en serie de dos reactores a espacio-tiempo constante. 
 
Publisher Universidad Autónoma del Estado de México
 
Date 2020-05-20
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo revisado por pares
 
Format application/pdf
text/html
application/zip
 
Identifier https://cienciaergosum.uaemex.mx/article/view/11106
10.30878/ces.v27n2a7
 
Source CIENCIA ergo-sum; Vol. 27 Núm. 2 (2020): CIENCIA ergo-sum (julio-octubre 2020)
CIENCIA ergo-sum; Vol. 27 Núm. 2 (2020): CIENCIA ergo-sum (julio-octubre 2020)
2395-8782
1405-0269
 
Language spa
 
Relation https://cienciaergosum.uaemex.mx/article/view/11106/10953
https://cienciaergosum.uaemex.mx/article/view/11106/10955
https://cienciaergosum.uaemex.mx/article/view/11106/10956
/*ref*/Armenante, P. M., & Kirwan, D. J. (1989). Mass transfer to microparticles in agitated systems. Chemical Engineering Science, 44(12), 2781-2796.
/*ref*/Avhad, M. R., & Marchetti, J. M. (2016). Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review. Catalysis Reviews - Science and Engineering, 58(2), 157-208.
/*ref*/Cavaleri, F. W., & Meirelles, A. J. A. (2007). Group contribution model for predicting viscosity of fatty compounds. Journal of Chemical & Engineering Data, 52(3), 965-972.
/*ref*/Ceriani, R., Goncalves, C., & Coutinho, J. (2015). Prediction of viscosities of fatty compounds and biodiesel by group contribution. Energy & Fuels, 29(6), 4001-4001.
/*ref*/Co, C. E. T., Tan, M. C., Tan, R. R., Diamante, J. A. R., Yan, L. R. C., & Razon, L. F. (2011). Internal mass-transfer limitations on the transesterification of coconut oil using an anionic ion exchange resin in a packed bed reactor. Catalysis Today, 174(1), 54-58.
/*ref*/DDBST GmbH (2017a). & Density of methanol. Disponible en http://www.ddbst.com/en/EED/PCP/DEN_C110.php
/*ref*/DDBST GmbH (2017b). Liquid dynamic viscosity of methanol. Disponible en http://ddbonline.ddbst.de/VogelCalculation/VogelCalculationCGI.exe?component=Methanol From 183 to 463 K
/*ref*/Dossin, T. F., Reyniers, M., Berger, R. J., & Marin, G. B. (2006). Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Applied Catalysis B: Environmental, 67(1), 136-148.
/*ref*/Elizalde, I., Ramírez, R., Ancheyta, J. (2013). Analytical solution to obtain the optimal volume of a series of stirred tank reactors sustaining a first order reaction. Avances en Ciencia e Ingeniería, 4(2), 51-59
/*ref*/Fogler, S. H. (2008). Elementos de ingeniería de las reacciones químicas. México: Pearson, Prentice Hall.
/*ref*/Glicerine Producers’ Association (1963). Physical properties of glycerine and its solutions. New York.
/*ref*/Gobierno de la República. (2018). Reforma energética. Disponible en http://reformas.gob.mx/reforma- energetica/que-es
/*ref*/International Energy Agency. (2018). Word Energy Outlook. Disponible en http://www.iea.org/weo/
/*ref*/Kapil, A., Wilson, K., Lee, A. F., & Sadhukhan, J. (2011). Kinetic modeling studies of heterogeneously catalyzed biodiesel synthesis reactions. Industrial & Engineering Chemistry Research, 50, 4818-4830.
/*ref*/Leung, M. K. H., Leung, D. Y. C., & Wu, X. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095.
/*ref*/Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88(4), 1020-1031.
/*ref*/Martínez, M. (2018). Propuesta de un modelo de negocio para la producción sustentable de biodiésel en el estado de Morelos, México (tesis de maestría). México: Instituto Politécnico Nacional.
/*ref*/Pérez, A. I. (2018). Modelación matemática de un reactor continuo en fase dispersa para la síntesis de biodiesel (tesis de maestría). México: Instituto Politécnico Nacional.
/*ref*/Poling, B., Prausnitz, J., & O’Connnell, J. (2001). The properties of gases and liquids. New York: Mc-Graw-Hill.
/*ref*/Riazi, M. R. (2005). Characterization and properties of petroleum fractions. USA: ASTM International.
/*ref*/Secretaría de Energía. (2017a), Balance nacional de energía 2016. México. Disponible en https://www.gob.mx/cms/uploads/attachment/file/288692/Balance_Nacional_de_Energ_a_2016__2_.pdf
/*ref*/Secretaría de Energía. (2017b). Prospectiva de petróleo crudo y petrolíferos 2017-2031. México. Disponible en https://www.gob.mx/cms/uploads/attachment/file/284344/Prospectiva_de_Pret_leo_Crudo_y_Petrol_feros_2017.pdf
/*ref*/Trejo, J. A., Longinotti, M. P., & Corti, H. R. (2011). The viscosity of glycerol-water mixtures including the supercooled region. Journal of Chemical & Engineering Data, 56(4), 1397-1406.
/*ref*/Valeri, D., & Meirelles, A. J. A. (1997). Viscosities of fatty acids, triglycerides, and their binary mixtures. Journal of the American Oil Chemists’ Society, 74(10), 1221-1226.
 
Rights Derechos de autor 2020 CIENCIA ergo-sum
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library