Análisis espacial de PM10 en el aire y su composición de metales con relación a factores ambientales alrededor de centros de educación preescolar en Cuenca

MASKANA

View Publication Info
 
 
Field Value
 
Title Análisis espacial de PM10 en el aire y su composición de metales con relación a factores ambientales alrededor de centros de educación preescolar en Cuenca
Spatial analysis of PM10 in the air and its metals composition with relation to environmental factors surrounding preschool educational centers in Cuenca
 
Creator Zegarra-Peña, Ronny
Andrade-Tenesaca, Susana
Parra-Ullauri, Mayra
Mejía-Coronel, Danilo
Rodas-Espinoza, Claudia
 
Description La contaminación del aire por Material Particulado (PM), como consecuencia del aumento del tráfico, es de gran preocupación para la salud pública en las zonas urbanas. El PM llama mucho la atención, primero porque, debido a su tamaño micrométrico, las partículas pueden penetrar en los pulmones e impedir el intercambio de gases, y en segundo lugar debido a su composición química, incluida la presencia de metales pesados, que pueden dañar los sistemas biológicos. A pesar de sus efectos perjudiciales para toda la población, los niños son más vulnerables debido a su organismo en desarrollo. Se sabe que las concentraciones de PM pueden verse influenciadas por las características de la calle, la meteorología y la presencia de vegetación circundante, que constituyen factores ambientales relacionados con la generación, dispersión y deposición de PM. Debido a la necesidad de reducir la exposición de la población a este tipo de contaminación, el presente estudio analizó la correlación de los factores ambientales de generación, dispersión y deposición en función de la información secundaria disponible con la concentración de PM10 y metales (plomo, cadmio, cobre, y zinc) en muestras de aire recolectadas en 21 centros de educación inicial en la ciudad de Cuenca. Los resultados obtenidos indican bajas relaciones entre contaminantes y factores ambientales, la presencia de alta variabilidad en las concentraciones de contaminantes y niveles de PM10 que a menudo exceden los límites establecidos por la Organización Mundial de la Salud y la legislación nacional.
Particulate matter (PM) air pollution, as a consequence of increasing traffic, is of high concern for public health in urban areas. The PM draws major attention, first because by its micrometric sizes can particles penetrate the lungs and hinder the gas exchange, and secondly due to its chemical composition including the presence of heavy metals, which can damage the biological systems. Despite its detrimental effects for the entire population, kids are more vulnerable because of its developing stage. It is known that PM concentrations can be influenced by street characteristics, meteorology, and the presence of surrounding vegetation, which constitute environmental factors related to the generation, dispersion, and deposition of PM. Due to the necessity of reducing population exposure to this type of pollution, the present study analyzed the correlation of environmental factors of generation, dispersion and deposition based on the available secondary information with the concentration of PM10, and metals (lead, cadmium, copper, and zinc) in air samples collected at 21 initial education centers in the city of Cuenca. The obtained results indicate low relationships between pollutants and environmental factors, the presence of high variability in pollutant concentrations, and PM10 levels often exceeding the limits established by the World Health Organization and national law.
 
Publisher Universidad de Cuenca
 
Date 2020-06-14
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
application/epub+zip
text/plain
 
Identifier https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/3036
10.18537/mskn.11.01.06
 
Source Maskana; Vol 11 No 1 (2020); 57-68
Maskana; Vol. 11 Núm. 1 (2020); 57-68
2477-8893
1390-6143
10.18537/mskn.11.01
 
Language spa
 
Relation https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/3036/2306
https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/3036/2403
https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/3036/2404
/*ref*/Agency for Toxic Substances & Disesase Registry. (2017). Lead (Pb) Toxicity: What are the U.S. standards for lead levels? 185 pp. USA: Agency for Toxic Substances and Disease Registry https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=8
/*ref*/Astudillo-Alemán, A. L., Ramirez Orellana, M. I., Garcia Alvear, N. B., Gónzales Arévalo, G. J., Gutierrez Valle, I. A., & Bailón Moscoso, N. C. (2015). Caracterización química del material particulado PM10 de la zona urbana de Cuenca- Ecuador e investigación de su genotoxicidad e inducción de estrés oxidativo en células epiteliales alveolares A549. Revista de Toxicología, 32, 121-126.
/*ref*/Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. F., & Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35, 107-115. https://doi.org/10.1016/j.jtemb.2016.02.006
/*ref*/Buyadi, S. N. A., Mohd, W. M. N. W., & Misni, A. (2015). Vegetation’s Role on Modifying Microclimate of Urban Resident. Procedia - Social and Behavioral Sciences, 202(December 2014), 400-407. https://doi.org/10.1016/j.sbspro.2015.08.244
/*ref*/Cakmak, S., Dales, R., Kauri, L. M., Mahmud, M., Van Ryswyk, K., Vanos, J., Liu, L., Kumarathasan, P., Thomson, E., Vincent, R., & Weichenthal, S. (2014). Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environmental Pollution, 189, 208-214. https://doi.org/10.1016/j.envpol.2014.03.004
/*ref*/Cordero, X., & Guillén, V. (2013). Diseño y validación de vivienda bioclimática para la ciudad de Cuenca. 2, 61-75. https://publicaciones.ucuenca.edu.ec/ojs/index.php/estoa/article/ viewFile/303/256
/*ref*/Donahue, N. M. (2018). Air Pollution and Air Quality. Green Chemistry, 151-176. https://doi.org/10.1016/B978-0-12-809270-5.00007-8
/*ref*/EMOV EP. (2014). Inventario de Emisiones Atmosféricas del Canton Cuenca 2014. Emov Ep, Red de monitoreo de la calidad del aire de Cuenca, December, 76. https://doi.org/10.13140/RG.2.2.17665.66405
/*ref*/Farghaly, O. A., & Ghandour, M. A. (2005). Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environmental Research, 97(3), 229-235. https://doi.org/10.1016/j.envres.2004.07.007
/*ref*/Flora, S. J. S., Flora, G., & Saxena, G. (2006). Environmental occurrence, health effects and management of lead poisoning. In: Lead (pp. 158-228). Elsevier. https://doi.org/10.1016/B978-044452945-9/50004-X
/*ref*/Fortoul, T. I., Rodriguez-Lara, V., Gonzalez-Villalva, A., Rojas-Lemus, M., Colin-Barenque, L., Bizarro-Nevares, P., García-Peláez, I., Ustarroz-Cano, M., López-Zepeda, S., Cervantes-Yépez, S., López-Valdez, N., Meléndez-García, N., Espinosa-Zurutuza, M., Cano-Gutierrez, G., & Cano-Rodríguez, M. C. (2015). Health Effects of Metals in Particulate Matter. In: Current Air Quality Issues: Vol. i (Issue tourism, p. 13). InTech. https://doi.org/10.5772/59749
/*ref*/GAD Municipal. (2014). Categorización de la demanda de transporte de Cuenca. 1.
/*ref*/Ilustre Municipalidad de Cuenca. (2015). Plan de Desarrollo y ordenamiento territorial del Cantón Cuenca.
/*ref*/Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J., & Hanahan, D. (2013). Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proceedings of the National Academy of Sciences, 110(48), 19507-19512. https://doi.org/10.1073/pnas.1318431110
/*ref*/Janhäll, S. (2015). Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmospheric Environment, 105, 130-137. https://doi.org/10.1016/j.atmosenv.2015.01.052
/*ref*/Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 8(4), e61104.
/*ref*/Jiang, L.-F., Yao, T.-M., Zhu, Z.-L., Wang, C., & Ji, L.-N. (2007). Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1774(11), 1414-1421. https://doi.org/10.1016/j.bbapap.2007.08.014
/*ref*/Kalisa, E., Fadlallah, S., Amani, M., Nahayo, L., & Habiyaremye, G. (2018). Temperature and air pollution relationship during heatwaves in Birmingham, UK. Sustainable Cities and Society, 43, 111-120. https://doi.org/10.1016/j.scs.2018.08.033
/*ref*/Karner, A. A., Eisinger, D. S., & Niemeier, D. A. (2010). Near-roadway air quality: Synthesizing the findings from real-world data. Environmental Science and Technology, 44(14), 5334-5344. https://doi.org/10.1021/es100008x
/*ref*/Kim, C.-H., Yoo, D.-C., Kwon, Y.-M., Han, W.-S., Kim, G.-S., Park, M.-J., Kim, Y.-S., & Choi, D.-W. (2010). A study on characteristics of atmospheric heavy metals in subway station. Toxicological Research, 26(2), 157-162. https://doi.org/10.5487/TR.2010.26.2.157
/*ref*/Kliengchuay, W., Meeyai, A. C., Worakhunpiset, S., & Tantrakarnapa, K. (2018). Relationships between meteorological parameters and particulate matter in Mae Hong Son province, Thailand. International Journal of Environmental Research and Public Health, 15(12), 1-13. https://doi.org/10.3390/ijerph15122801
/*ref*/Laing, S., Wang, G., Briazova, T., Zhang, C., Wang, A., Zheng, Z., Gow, A., Chen, A. F., Rajagopalan, S., Chen, L. C., Sun, Q., & Zhang, K. (2010). Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. American Journal of Physiology-Cell Physiology, 299(4), C736-C749. https://doi.org/10.1152/ajpcell.00529.2009
/*ref*/Landsat 8 Data Users Handbook (2018). Landsat missions. https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-5
/*ref*/Lenschow, P. (2001). Some ideas about the sources of PM10. Atmospheric Environment, 35(1), 23-33. https://doi.org/10.1016/S1352-2310(01)00122-4
/*ref*/Li, H., Qian, X., & Wang, Q. (2013). Heavy metals in atmospheric particulate matter: A comprehensive understanding is needed for monitoring and risk mitigation. Environmental Science and Technology, 47(23), 13210-13211. https://doi.org/10.1021/es404751a
/*ref*/Martini, A., Biondi, D., Batista, A. C., Martini, A., Biondi, D., & Batista, A. C. (2018). Distance and intensity of microclimatic influence provided by urban forest typologies. Floresta e Ambiente, 25(2), 1-12. https://doi.org/10.1590/2179-8087.021317
/*ref*/Mejia, D., Zegarra, R., Astudillo, A., & Moscoso, D. (2018). Análisis de partículas sedimentables y niveles de presión sonora en el área urbana y periférica de Cuenca. Revista de La Facultad de Ciencias Químicas, 19, 55-64.
/*ref*/Mohankumar, S., & Senthilkumar, P. (2017). Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renewable and Sustainable Energy Reviews, 80(June), 1227-1238. https://doi.org/10.1016/j.rser.2017.05.133
/*ref*/Mohanraj, R., Azeez, P. A., & Priscilla, T. (2004). Heavy metals in airborne particulate matter of urban Coimbatore. Archives of Environmental Contamination and Toxicology, 47(2), 162-167. https://doi.org/10.1007/s00244-004-3054-9
/*ref*/Monks, P., Allan, J., Carruthers, D., Carslaw, D., Fuller, G., OBE, R. H., Heal, M., Lewis, A., Nemitz, E., Williams, M., & Reeves, C. (2013). Non-exhaust emissions from road traffic. 93 pp. Disponible en https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1907101151_20190709_Non_Exhaust_Emissions_typeset_Final.pdf
/*ref*/Niu, J., Liberda, E. N., Qu, S., Guo, X., Li, X., Zhang, J., Meng, J., Yan, B., Li, N., Zhong, M., Ito, K., Wildman, R., Liu, H., Chen, L. C., & Qu, Q. (2013). The role of metal components in the cardiovascular effects of PM2.5. PLoS ONE, 8(12), e83782. https://doi.org/10.1371/journal.pone.0083782
/*ref*/Penkała, M., Ogrodnik, P., & Rogula-Kozłowska, W. (2018). Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments, 5(1), 1-13. https://doi.org/10.3390/environments5010009
/*ref*/Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. International Journal of Environmental Research and Public Health, 15(1), 1-16. https://doi.org/10.3390/ijerph15010016
/*ref*/Popoola, L. T., Adebanjo, S. A., & Adeoye, B. K. (2018). Assessment of atmospheric particulate matter and heavy metals: a critical review. International Journal of Environmental Science and Technology, 15(5), 935-948. https://doi.org/10.1007/s13762-017-1454-4
/*ref*/Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234
/*ref*/Rodas Espinoza, C. R., Mora Verdugo, M. A., Neira Molina, V. A., Andrade Tenesaca, D. S., Ochoa, A. M., Argudo, D. M., Parra, A., & Orellana, D. (2017). Enfermedades alérgicas. Ecuador: CEDIA. https://www.cedia.edu.ec/es/proyectos-ganadores/cepra-xi/enfermedades-alergicas
/*ref*/Roohani, N., Hurrell, R., Kelishadi, R., & Schulin, R. (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences, 18(2), 144-157.
/*ref*/Roupsard, P., Amielh, M., Maro, D., Coppalle, A., Branger, H., Connan, O., Laguionie, P., Hébert, D., & Talbaut, M. (2013). Measurement in a wind tunnel of dry deposition velocities of submicron aerosol with associated turbulence onto rough and smooth urban surfaces. Journal of Aerosol Science, 55, 12-24. https://doi.org/10.1016/j.jaerosci.2012.07.006
/*ref*/Singh, K. B. (2012). Long term excessive Zn supplementation induced oxidative stress in Wistar rats fed on semi-synthetic diet. Food and Nutrition Sciences, 3(06), 724-731. https://doi.org/10.4236/fns.2012.36098
/*ref*/Tang, J., McNabola, A., Misstear, B., Pilla, F., & Alam, M. S. (2019). Assessing the impact of vehicle speed limits and fleet composition on air quality near a school. International Journal of Environmental Research and Public Health, 16(1), 1-23. https://doi.org/10.3390/ijerph16010149
/*ref*/Tarantino, G. (2013). Exposure to ambient air particulate matter and non-alcoholic fatty liver disease. World Journal of Gastroenterology, 19(25), 3951-3956. https://doi.org/10.3748/wjg.v19.i25.3951
/*ref*/U.S. Environmental Protection Agency. (2001). Control of emissions of hazardous air pollutants from mobile sources. USA: Environmental Protection Agency. 45 pp.
/*ref*/Wong, D. W., Yuan, L., & Perlin, S. A. (2004). Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Analysis and Environmental Epidemiology, 14(5), 404-415. https://doi.org/10.1038/sj.jea.7500338
/*ref*/World Health Organization. (2006). Principles for evaluating health risks in children associated with exposure to chemicals (Vol. 237). 329 pp. Disponible en https://apps.who.int/iris/handle/10665/43604
/*ref*/World Health Organization (WHO). (2013). Review of evidence on health aspects of air pollution - REVIHAAP Project: final technical report. 309 pp. Disponible en http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
/*ref*/Yitshak-Sade, M., Kloog, I., & Novack, V. (2017). Do air pollution and neighborhood greenness exposures improve the predicted cardiovascular risk? Environment International, 107, 147-153. https://doi.org/10.1016/j.envint.2017.07.011
 
Rights Derechos de autor 2020 Ronny Zegarra, Susana Andrade, Mayra Parra, Danilo Mejía, Claudia Rodas
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library