Micochemical composition and antioxidant activity of Pleurotus ostreatus mushroom in different growth stages

Acta Biológica Colombiana

View Publication Info
 
 
Field Value
 
Title Micochemical composition and antioxidant activity of Pleurotus ostreatus mushroom in different growth stages
COMPOSICIÓN MICOQUÍMICA Y ACTIVIDAD ANTIOXIDANTE DE LA SETA Pleurotus ostreatus EN DIFERENTES ESTADOS DE CRECIMIENTO
COMPOSIÇÃO MICROQUÍMICA E ATIVIDADE ANTIOXIDANTE DE PLEUROTUS OSTREATUS DE COGUMELO EM DIFERENTES ESTADOS DE CRESCIMENTO
 
Creator Beltrán Delgado, Yaixa
Morris Quevedo, Humberto Joaquin
Oliva Dominguez, Daliannis
Batista Corbal, Pedro
Llaurado Maury, Gabriel
 
Subject antioxidant
fermentation
nutraceuticals
mushrooms
antioxidante
fermentación
nutracéuticos
setas
Biotecnologia
biologia
 
Description Pleurotussp. is a genus of Basidiomycetes widely distributed worldwide, with species that are important not only from the commercial point of view for its nutritional value, but also for their medicinal properties. However, mycochemical studies and the relationship with the antioxidant properties of bioproducts obtained from these mushrooms during different growth stages are still insufficient. In this work, the content of proteins, carbohydrates, reducing sugars, total phenols and flavonoids was determined, as well as the in vitroantioxidant activity (tests of scavenging DPPH and reducing power estimation) of aqueous extracts of Pleurotus ostreatusin different growth stages (primordia and mature fruiting bodies) during the solid fermentation. The content of proteins, reducing sugars and flavonoids was higher in the aqueous extract of mature fruiting bodies, while carbohydrates and total phenols were increased in the extract of primordia. The EC50values in the DPPH and reducing power assays were 1.72 mg/mL and 3.27 mg/mL for primordia extract and 0.44 mg/mL and 0.48 mg/mL in the case of mature fruiting bodies extract, respectively. The results suggest that the antioxidant properties of Pleurotus ostreatusaqueous extracts (primordia and mature fruiting bodies), reflected the variations in the concentration of bioactive molecules, taking into account the physiological characteristics of the growth phases. This could be useful in designing protocols for obtaining bioproducts from Pleurotus ostreatuswith potential applications as antioxidant in food and pharmaceutical industries.
Pleurotussp. es un género de basidiomicetos ampliamente distribuido a nivel mundial, con especies que revisten importancia, no solo desde el punto de vista comercial por su valor nutricional, sino también por sus propiedades medicinales. Sin embargo, aún son insuficientes los estudios micoquímicos y se desconoce su relación con las propiedades antioxidantes de bioproductos obtenidos de estas setas durante diferentes estados de crecimiento. En el presente trabajo, se determinó el contenido de proteínas, carbohidratos, azúcares reductores, fenoles totales y flavonoides, así como la actividad antioxidante in vitro(ensayos de captación de radicales DPPH y estimación del poder reductor) de extractos acuosos de Pleurotus ostreatusen dos estados de crecimiento (primordios y cuerpos fructíferos maduros) durante la fermentación sólida. El contenido de proteínas, azúcares reductores y flavonoides fue superior en el extracto acuoso de cuerpos fructíferos maduros, mientras que los carbohidratos y fenoles totales fueron mayores en el extracto de primordios. Los valores de EC50en los ensayos de DPPH y los de poder reductor fueron de 1,72 mg/mL y 3,27 mg/mL para el extracto de primordios y de 0,44 mg/mL y 0,48 mg/mL para el de cuerpos fructíferos maduros, respectivamente. Los resultados sugieren que las propiedades antioxidantes de extractos acuosos de Pleurotus ostreatus(primordios y cuerpos fructíferos maduros) reflejan las variaciones en la concentración de moléculas bioactivas, teniendo en cuenta las particularidades fisiológicas de las fases de crecimiento. Ello podría resultar de utilidad para el diseño de protocolos de obtención de bioproductos de Pleurotus ostreatuscon aplicaciones potenciales como antioxidantes en las industrias alimentaria y farmacéutica.
Pleurotus sp é um gênero de basidiomicetos amplamente distribuíds
 
Publisher Universidad Nacional de Colombia - Sede Bogotá - Faculdad de Ciencias - Departamento de Biología
 
Date 2020-12-24
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistas.unal.edu.co/index.php/actabiol/article/view/84519
10.15446/abc.v26n1.84519
 
Source Acta Biológica Colombiana; Vol. 26 Núm. 1 (2021); 89 - 98
Acta Biológica Colombiana; Vol. 26 No. 1 (2021); 89 - 98
1900-1649
0120-548X
 
Language spa
 
Relation https://revistas.unal.edu.co/index.php/actabiol/article/view/84519/pdf
/*ref*/Alispahic A, Šapcanin A, Salihovic M, Ramic E, Dedic A, Pazalja M. Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Glas hem tehnol Bosne Herceg.2015;44:5-8
/*ref*/Barros L, Ferreira MJ, Queirós B, Ferreira I, Baptista P. Total phenols, ascorbic acid, b-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem.2007a;103:413–419. Doi: https://dx.doi.org/10.1016/j.foodchem.2006.07.038
/*ref*/Barros L, Baptista P, Ferreira IC. Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem Toxicol. 2007b;45(9):1731-1737. Doi: https://dx.doi.org/10.1016/j.fct.2007.03.006
/*ref*/Barros L, Dueñas M, Ferreira IC, Baptista P, Santos-Buelga C. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol.2009;47(6):1076-1079. Doi: https://dx.doi.org/10.1016/j.fct.2009.01.039
/*ref*/Bermúdez RC, García N, Gross P, Serrano M. Cultivation of Pleurotus on agricultural substrates in Cuba. Micol Aplicada Int.2001;13(1):2529.
/*ref*/Boonsong S, Klaypradit W, Wilaipun P. Antioxidant activities of extracts from five edible mushrooms using different extractants. AGNR.2016;50:89-97. Doi: https://dx.doi.org/10.1016/j.anres.2015.07.002
/*ref*/Carrasco JA, Serna SO, Gutiérrez, JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J Food Compos Anal.2017;58:69-81. Doi: https://dx.doi.org/10.1016/j.jfca.2017.01.016
/*ref*/Caz V, Gil A, Largo C, Tabernero M, Santamaría M, Martin-Hernández R, et al. Modulation of cholesterol-related gene expression by dietary fiber fractions from edible mushrooms. J Agric Food Chem.2015;63(33):7371-7380. Doi: https://dx.doi.org/10.1021/acs.jafc.5b02942
/*ref*/Chang ST, Wasser SP. The Role of Culinary-Medicinal Mushrooms on Human Welfare with a Pyramid Model for Human Health. Int J Med Mush.2012;14(2):95-134.
/*ref*/Chavéz M, Díaz J, Pérez U, Delfín J. Temas de Enzimología (Tomo1), Santiago de Cuba. ENPES; 1990.
/*ref*/Chemat F, Vian MA, Cravotto G. Green extraction of natural products: concept and principles. Int J Mol Sci.2012;13(7),8615-8627. Doi: https://dx.doi.org/10.3390/ijms13078615
/*ref*/Diez VA, Alvarez A. Compositional and nutritional studies on two wild edible mushrooms from northwest Spain. Food Chem.2001;75:417–422. Doi: https://dx.doi.org/10.1016/S0308-8146(01)00229-1
/*ref*/Dubois M, Gilles KA, Hamilton JK, Robers PA, Smith F. Colorimetric method for the determination of sugars and related substances. Anal Biochem.1956;28:350-356.
/*ref*/García N. Producción de setas comestibles y enzimas lacasas por fermentación en estado sólido de la pulpa de café con Pleurotus spp (tesis de doctorado). Santiago de Cuba: Centro de Estudios de Biotecnología Industrial, Facultad de Ciencias Naturales, Universidad de Oriente; 2008. 150 p.
/*ref*/Gargano ML, Van Griensven LJ, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, et al. Medicinal mushrooms: Valuable biological resources of high exploitation potential. PI Biosystems.2017;151(3):548-565. Doi: https://dx.doi.org/10.1080/11263504.2017.1301590
/*ref*/Golak I, Kałużewicz A, Spiżewski T, Siwulski M, Sobieralski K. Bioactive compounds and medicinal properties of oyster mushrooms (Pleurotus sp.). Folia Hortic. 2018;30(2):191-201. Doi: https://doi.org/10.2478/fhort-2018-0012
/*ref*/González I, Escalona HB, Ponce E, Téllez M, Gupta VK, Díaz G, et al. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front Microbiol.2016;7:1099. Doi: https://dx.doi.org/10.3389/fmicb.2016.01099
/*ref*/Huang SJ, Mau JL. Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of irradiation. LWT- Food Sci Technol.2006;39:707-716. Doi: https://dx.doi.org/10.1016/j.lwt.2005.06.001
/*ref*/Jourdan PS, McIntosh CA, Mansell RL. Naringin levels in citrus tissues: II. Quantitative distribution of naringin in Citrus paradise MacFad. Plant Physiol.1985;77:903-908. Doi: https://dx.doi.org/10.1104/pp.77.4.903
/*ref*/Kalac P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric.2013;93:209–218. Doi: https://dx.doi.org/10.1002/jsfa.5960
/*ref*/Khan MA, Tania M. Nutritional and medicinal importance of Pleurotus mushrooms: an overview. Food Rev Int.2012;28(3):313-329. Doi: https://dx.doi.org/10.1080/87559129.2011.637267
/*ref*/Kinge TR, Adi EM, Mih AM, Ache NA, Nji TM. Effect of substrate on the growth, nutritional and bioactive components of Pleurotus ostreatus and Pleurotus florida. Afr J Biotechnol.2016;15(27):1476-1486. Doi: https://dx.doi.org/10.5897/AJB2015.15130
/*ref*/Klaus A, Kozarski M, Niksic M, Jakovljevic D, Todorovic N, Van Griensven L. Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. LWT-Food Sci Technol.2011;44(10):2005-2011. Doi: https://dx.doi.org/10.1016/j.lwt.2011.05.010
/*ref*/Koutrotsios G, Kalogeropoulos N, Stathopoulos P, Kaliora AC, Zervakis GI. Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters. World J Microbiol Biotechnol.2017;33:98. Doi: https://dx.doi.org/10.1021/acs.jafc.8b01532
/*ref*/Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging.2018;13:757–772. Doi: https://dx.doi.org/10.2147/CIA.S158513
/*ref*/Liu J, Wu YC, Kan J, Wang Y, Jin CH. Changes in reactive oxygen species production and antioxidant enzyme activity of Agaricus bisporus harvested at different stages of maturity. J Sci Food Agric.2013;93(9):2201-2206. Doi: https://dx.doi.org/10.1016/j.fct.2012.10.014
/*ref*/Lowry OH, Rosenbrough NJ, Farr A, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem.1951;193:265-275.
/*ref*/Manzi P, Aguzzi A, Pizzoferrato, L. Nutritional value of mushrooms widely consumed in Italy. Food Chem.2001;73:321–325. Doi: https://dx.doi.org/10.1016/S0308-8146(00)00304-6
/*ref*/Meir S, Kanner J, Akiri B, Philosoph S. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agr Food Chem. 1995;43:1813-1819. Doi: https://dx.doi.org/10.1021/jf00055a012
/*ref*/Meneses ME, Martínez D, Torres N, Sánchez M, Aguilar M, Morales P, et al. Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PLoS One.2016;11,e0159631. Doi: https://dx.doi.org/10.1371/journal.pone.0159631
/*ref*/Miller G. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem.1959;31:426-428.
/*ref*/Morris HJ, Beltrán Y, Llauradó G, Batista PL, Perraud-Gaime I, García N, et al. Mycelia from Pleurotus sp (oyster mushroom): a new wave of antimicrobials, anticancer and antioxidant bio-ingredients. Int J Phytocosmetics Nat Ingredients.2017;2,14. Doi: https://dx.doi.org/10.15171/ijpni.2017.03
/*ref*/Morris HJ, Llauradó G, Beltrán Y, Lebeque Y, Fontaine R, Bermúdez RC et al. Procedimiento para la obtención de un preparado inmunocéutico de Pleurotus spp. Certificado No. 23717 (Resolución 1754/2011) Ref: 2011/1337.
/*ref*/Nattoh G, Musieba F, Gatebe E, Mathara J. Towards profiling differential distribution of bioactive molecules across four phenologies in Pleurotus djamor R22. Asian Pac J Trop Dis.2016;6(6):472-480. Doi: https://dx.doi.org/10.5251/abjna.2016.7.1.9.18
/*ref*/Okwulehie IC, Urama J, Okorie DO. Chemical composition and nutritional value of mature and young fruiting bodies of Pleurotus pulmonarius produced on Andropogon gayanus straw and Khaya ivorensis sawdust. IOSR J Pharm Biol Sci. 2014;9(3):72-77.
/*ref*/Palacios I, Lozano M, Moro C, Arrigo MD, Rostagno MA, Martínez JA, et al. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem.2011;128(3):674-678. Doi: https://dx.doi.org/10.1016/j.foodchem.2011.03.085
/*ref*/Pelkmans J, Lugones LG, Wösten HA. Fruiting bodies formation in basidiomicetes. 15. In Growth, differentiation and sexuality. 3rd edition. Springer International Publishing Switzerland; 2016. p. 387-405.
/*ref*/Radzki W, Slawinska A, Jablonska-Rys E, Gustaw W. Antioxidant capacity and polyphenolic content of dried wild edible mushrooms from Poland. Int J Med Mush. 2014;16(1):65-75. Doi: https://dx.doi.org/10.1016/j.lwt.2015.10.016
/*ref*/Rahi DK, Malik D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol.2016. Doi: https://dx.doi.org/10.1155/2016/7654123
/*ref*/Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition.2017;5(2):35-46. Doi: https://doi.org/10.1016/j.phanu.2017.02.001
/*ref*/Rodrigues D, Vasconcelos M, Gomes A, Freitas A, Roriz M, Duarte AC. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae,P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J Food Sci Technol.2015;52(11):6927-6939. Doi: https://dx.doi.org/10.1007/s13197-015-1826-z
/*ref*/Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol Rev.2018;32(4):236-248. Doi: https://dx.doi.org/10.1016/j.fbr.2018.02.003
/*ref*/Sałata A, Lemieszek M, Parzymies M. The nutritional and health properties of an oyster mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm). Acta Sci Pol Hortoru.2018;17:185-197. Doi: http://dx.doi.org/10.24326/asphc.2018.2.16
/*ref*/Sánchez C. Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol.2017;21(1):13-22. Doi: https://dx.doi.org/10.1016/j.synbio.2016.12.001
/*ref*/Selvamani S, El-Enshasy HA, Dailin DJ, Malek R, Hanapi S, Ambehabati K, et al. Antioxidant Compounds of the Edible Mushroom Pleurotus ostreatus. Int J Biotechnol Wellness Ind.2018;7(1):1-14.
/*ref*/Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autioxidation of soybean oil in cyclodextrin emulsion. J Agr Food Chem.1992;40:945-948. Doi: https://dx.doi.org/10.1021/jf00018a005
/*ref*/Shukla S and Jaitly AK. Morphological and Biochemical Characterization of Different Oyster Mushroom (Pleurotus spp.) J Phytol.2011;3(8):18-20.
/*ref*/Slinkard K, Singleton VL. Total phenol analyses: automation and comparison with manual method. Am J Enol Vitic.1977;28:49-55.
/*ref*/Soares AA, Souza CGM, Daniel FM, Ferrari GP, Costa SMG, Peralta RM. Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chem.2009;112:775–781. Doi: https://dx.doi.org/10.1016/j.foodchem.2008.05.117
/*ref*/Suárez C, Nieto IJ. Cultivo biotecnológico de macrohongos comestibles: una alternativa en la obtención de nutracéuticos. Rev Iberoam Micol.2013;30(3):1-8. Doi: https://dx.doi.org/10.1016/j.riam.2012.03.01
/*ref*/Sudha G, Vadivukkarasi S, Shree RBI, Lakshmanan P. Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Sci Biotechnol.2012;21(3):661-668. Doi: https://dx.doi.org/10.1007/s10068-012-0086-1
/*ref*/Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol.2015.14pag. Doi: https://dx.doi.org/10.1155/2015/376387
/*ref*/Wang D, Sakoda A, Suzuki M. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol. 2001; 78(3):293-300. Doi :https://dx.doi.org/10.1016/S0960-8524(01)00002-5
/*ref*/Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol.2002,60(3),258–274. Doi: https://dx.doi.org/10.1007/s00253-002-1076-7
/*ref*/Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem.1999;64:555-559. Doi: https://doi.org/10.1016/S0308-8146(98)00102-2
/*ref*/Zhou S, Ma F, Zhang X, Zhang J. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biol. 2016; 120 (6–7): 852-861. Doi:http://dx.doi.org/10.1016/j.funbio.2016.03.007
 
Rights Derechos de autor 2020 Acta Biológica Colombiana
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library