LEAF ANATOMY CHARACTERIZATION OF FOUR Apochloa SPECIES: A C3 GENUS RELATED TO EVOLUTION OF C4 PATHWAY IN GRASSES

Acta Biológica Colombiana

View Publication Info
 
 
Field Value
 
Title LEAF ANATOMY CHARACTERIZATION OF FOUR Apochloa SPECIES: A C3 GENUS RELATED TO EVOLUTION OF C4 PATHWAY IN GRASSES
Caracterización anatómica de hojas de cuatro especies de Apochloa: un género relacionado con la evolución de la vía c4 en gramíneas
CARACTERIZAÇÃO TRANSVERSAL DE FOLHAS DE QUATRO ESPÉCIES DE APOCHLOA: UM GÊNERO RELACIONADO COM A EVOLUÇÃO DA VIA C4 EM GRAMÍNEAS
 
Creator Mendonça, Ane Marcela das Chagas
Viana, Pedro Lage
Barbosa, João Paulo Rodrigues Alves Delfino
 
Subject Anatomía de la hoja
Apochloa spp
fotosíntesis C4
poaceae
subtribu arthropogoninae
Fisiología Vegetal
Anatomia Foliar
Família Poaceae
Fotossíntese C4
Subtribo Arthropogoninae.
Fisiologia Vegetal
Apochloa spp
C4 photosynthesis
leaf anatomy
poaceae
subtribe arthropogoninae
Plant Physiology
 
Description Leaf anatomy characteristics provide important evidences about the transition between C3 and C4 pathways. The C4 photosynthesis pathway allowed to reduce the C3 photorespiratory rate, concentrating CO2 around the Rubisco site and using structures and machinery already presented in C3 plants. In monocots, it is observed a high number of C4 lineages, most of them phylogenetically related to C3 groups. The genus Apochloa (C3), subtribe Arthropogoninae, is related to two C4 genera Coleataenia and Cyphonanthus. The aim of this study was to evaluate four Apochloa species in order to establish anatomical characteristics related to the evolution of C4 pathway in this group. By means of transverse sections fully expanded leaves of A. euprepes, A. lorea, A. molinioides, and A. poliophylla were collected and the characteristics of the mesophyll (M) and bundle sheath (BS) cells were determined. These species showed a rustic Kranz anatomy with enlarged and radial arranged BS cells, which have few organelles organized in a centrifugal position. Although the modifications of BS cells are probably related to the maintenance of plant water status, we also discuss the evolution for the establishment of C4 photosynthesis in the related C4 genera.
Las características de la anatomía de la hoja proporcionan evidencias importantes sobre la transición entre las vías C3 y C4. La fotosíntesis C4 surgió para reducir la tasa de fotorrespiración C3, concentrando el CO2 alrededor del sitio de la Rubisco y utilizando estructuras y maquinaria ya presentes en las plantas C3. En monocotiledóneas, se observa un alto número de linajes C4, la mayoría de ellas filogenéticamente relacionadas con grupos C3. El género C3 Apochloa, que pertenece a la subtribu Arthropogoninae, está relacionado con dos géneros C4 Coleataenia and Cyphonanthus. En este contexto, el objetivo fue evaluar cuatro especies de Apochloa para establecer las características anatómicas relacionadas con la evolución de la via C4 en este grupo. Se colectaron hojas completamente expandidas de A. euprepes, A. lorea, A. molinioides y A. poliophylla y se determinaron las características de las células del mesófilo (M) y del haz de la vaina (HV) a partir de secciones transversales de la hoja. Las especies presentaron una anatomía rústica de Kranz con células HV agrandadas y de distribución radial, con pocas organelas organizadas en posición centrífuga. Aunque las modificaciones de las células HV están probablemente relacionadas con el mantenimiento del estado hídrico de la planta, se puede inferir que facilitan el establecimiento de la fotosíntesis C4 en los géneros C4 relacionados.
As características da anatomia foliar fornecem evidências importantes sobre a transição entre as vias C3 e C4. A fotossíntese C4 surgiu para reduzir a taxa de fotorrespiração C3, concentrando CO2 ao redor do sítio da Rubisco, utilizando as estruturas e maquinaria já presentes nas plantas C3. Em monocotiledôneas, observa-se um elevado número de linhagens C4, a maioria delas filogeneticamente relacionadas aos grupos C3. O gênero C3 Apochloa, pertencente à subtribo Arthropogoninae, está relacionado a dois gêneros C4. Nesse contexto, o objetivo foi avaliar as secções foliares transversais de quatro espécies de Apochloa para estabelecer características anatômicas relacionadas à evolução da via C4 nesse grupo. Folhas totalmente expandidas de Apochloa euprepes, A. lorea, A. molinioides e A. poliophylla foram coletadas e as características das células do mesofilo (M) e do feixe da bainha (B) foram determinadas a partir de seções transversais foliares. As espécies apresentavam uma anatomia Kranz rústica com células B aumentadas e distribuídas radialmente, com poucas organelas organizadas em posição centrífuga. Embora as modificações das células B estejam provavelmente relacionadas à manutenção do estado da água da planta, podemos inferir que elas facilitam o estabelecimento da fotossíntese C4 nos gêneros C4 relacionados, ou representam uma reversão da via C4 para C3.
 
Publisher Universidad Nacional de Colombia - Sede Bogotá - Faculdad de Ciencias - Departamento de Biología
 
Date 2020-09-09
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistas.unal.edu.co/index.php/actabiol/article/view/83228
10.15446/abc.v26n1.83228
 
Source Acta Biológica Colombiana; Vol. 26 Núm. 1 (2021); 12 - 18
Acta Biológica Colombiana; Vol. 26 No. 1 (2021); 12 - 18
1900-1649
0120-548X
 
Language eng
 
Relation https://revistas.unal.edu.co/index.php/actabiol/article/view/83228/pdf
/*ref*/Bianconi ME, Hackel J, Vorontsova MS, Alberti A, Arthan W, Burke SV, et al. Continued adaptation of C4 photosynthesis after an initial burst of changes in Andropogoneae grasses. Syst Biol. 2020;69(3):445-461. Doi: https://doi.org/10.1093/sysbio/syz066
/*ref*/Brown WV. Leaf Anatomy in Grass Systematics. Bot Gaz. 1958;119(3):170-178.
/*ref*/Castro NM, Menezes NL. Espécies de Paepaianthus Kunth, Eriocaulaceae da Serra Do Cipó (Minas Gerais). Acta Bot Brasilica 1995;9(2):213-229.
/*ref*/Christin P-A, Freckleton RP, Osborne CP. Can phylogenetics identify C4 origins and reversals? Trends Ecol Evol. 2010;25(7):403-409. Doi: https://doi.org/10.1016/j.tree.2010.04.007
/*ref*/Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, et al. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc Natl Acad Sci. 2013;110(4):1381-1386. Doi: https://doi.org/10.1073/pnas.1216777110
/*ref*/Christin P-A, Wallace MJ, Clayton H, Edwards EJ, Furbank RT, Hattersley PW, et al. Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae. J Exp Bot. 2012;63(17):6297-6308. Doi: https://doi.org/10.1093/jxb/ers282
/*ref*/Dengler NG, Dengler RE, Donnelly PM, Hattersley PW. Quantitative Leaf Anatomy of C3 and C4 Grasses (Poaceae): Bundle Sheath and Mesophyll Surface Area Relationships. Ann Bot. 1994;73(3):241-255. Doi: https://doi.org/10.1006/anbo.1994.1029
/*ref*/Dengler NG, Dengler RE, Hattersley PW. Differing Ontogenetic Origins of PCR (" Kranz") Sheaths in Leaf Blades of C4 Grasses (Poaceae). Am J Bot. 1985;72(2):284-302. Doi: https://doi.org/10.1002/j.1537-2197.1985.tb08293.x
/*ref*/Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Consortium CG. The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science. Science 2010;328:587-591. Doi: https://doi.org/10.1126/science.1177216
/*ref*/Edwards EJ, Smith SA. Phylogenetic analyses reveal the shady history of C4 grasses. Proc Natl Acad Sci. 2010;107(6):2532-2537. Doi: https://doi.org/10.1073/pnas.0909672107
/*ref*/Ermakova M, Danila FR, Furbank RT, von Caemmerer S. On the road to C4 rice: advances and perspectives. Plant J. 2020;101:940-950. Doi: https://doi.org/10.1111/tpj.14562
/*ref*/Giulietti AM, de Menezes NL, Pirani JR, Meguro M, Wanderley M das GL. Flora da Serra do Cipó, Minas Gerais: Caraterização e Lista das Espécies. Bol Botânica da Univ São Paulo 1987;9:1-151. Doi: https://doi.org/10.11606/issn.2316-9052.v9i0p1-151
/*ref*/Giussani LM, Cota-Sánchez H, Zuloaga FO, Kellogg EA. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot. 2001;88(11):1993-2012. Doi: https://doi.org/10.2307/3558427
/*ref*/Gowik U, Westhoff P. The Path from C3 to C4 Photosynthesis. Plant Physiol. 2011;155(1):56-63. Doi: https://doi.org/10.1104/pp.110.165308
/*ref*/GPWG II. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 2012;193:304-312. Doi: https://doi.org/10.1111/j.1469-8137.2011.03972.x
/*ref*/Griffiths H, Weller G, Toy LFM, Dennis RJ. You’re so vein: Bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ. 2013;36(2):249-261. Doi: https://doi.org/10.1111/j.1365-3040.2012.02585.x.
/*ref*/Hattersley PW, Watson L. C4 grasses: an anatomical criterion for distinguishing between NADP-malic enzyme species and PCK or NAD-malic enzyme species. Aust J Bot. 1976;24:297-308.
/*ref*/Khoshravesh R, Stata M, Busch FA, Saladié M, Castelli JM, Dakin N, et al. The evolutionary origin of C4 photosynthesis in the grass subtribe Neurachninae. Plant Physiol. 2020;182:566-583. Doi: https://doi.org/10.1104/pp.19.00925
/*ref*/Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, et al. C3-C4 intermediacy in grasses: Organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J Exp Bot. 2016;67(10):3065-3078. Doi: https://doi.org/10.1093/jxb/erw150
/*ref*/Leegood RC. Roles of the bundle sheath cells in leaves of C3 plants. J Plant Physiol. 2008;59(7):1663-1673. Doi: https://doi.org/10.1093/jxb/erm335
/*ref*/Lundgren MR, Dunning LT, Olofsson JK, Moreno-Villena JJ, Bouvier JW, Sage TL, et al. C4 anatomy can evolve via a single developmental change. Ecol Lett. 2019;22(2):302-312. Doi: https://doi.org/10.1111/ele.13191
/*ref*/Lundgren MR, Osborne CP, Christin PA. Deconstructing Kranz anatomy to understand C4 evolution. J Exp Bot. 2014;65(13):3357-3369. Doi: https://doi.org/10.1093/jxb/eru186
/*ref*/Mckown AD, Dengler NG. Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am J Bot. 2007;94(3):382-389. Doi: https://doi.org/10.3732/ajb.94.3.382
/*ref*/Medina BMO, Fernandes GW. The potential of natural regeneration of rocky outcrop vegetation on rupestrian field soils in “Serra do Cipó”, Brazil. Rev Bras Botânica 2007;30(4):665-678. Doi: https://doi.org/10.1590/S0100-84042007000400011
/*ref*/Miyake H. Starch Accumulation in the Bundle Sheaths of C3 Plants: A Possible Pre-Condition for C4 Photosynthesis. Plant Cell Physiol. 2016;57(5):890-896. Doi: https://doi.org/10.1093/pcp/pcw046
/*ref*/Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, et al. Phylogeny of the Paniceae (Poaceae: Panicoideae): Integrating plastid DNA sequences and morphology into a new classification. Cladistics 2012;28(4):333-356. Doi: https://doi.org/10.1111/j.1096-0031.2011.00384.x
/*ref*/Muhaidat R, Sage TL, Frohlich MW, Dengler NG, Sage RF. Characterization of C3-C4 intermediate species in the genus Heliotropium L. (Boraginaceae): Anatomy, ultrastructure and enzyme activity. Plant Cell Environ. 2011;34(10):1723-1736. Doi: https://doi.org/10.1111/j.1365-3040.2011.02367.x
/*ref*/O’Brien TP, Kuo J. Development of the suberized lamella in the mestome sheath of wheat leaves. Aust J Bot. 1975;23:783-794. Doi: https://doi.org/10.1071/BT9750783
/*ref*/Osborne CP, Sack L. Evolution of C4 plants: A new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philos Trans R Soc B Biol Sci. 2012;367(1588):583-600. Doi: https://doi.org/10.1098/rstb.2011.0261
/*ref*/Rawsthorne S. C3-C4 intermediate photosynthesis: linking physiology to gene expression. Plant Sci. 1992;2:267-274. Doi: https://doi.org/10.1111/j.1365-313X.1992.00267.x
/*ref*/Ribeiro KT, do Nascimento JS, Madeira JA, Ribeiro LC. Aferição dos limites da Mata Atlântica na Serra do Cipó, MG, Brasil, visando maior compreensão e proteção de um mosaico vegetacional. Nat Conserv. 2009;7(1):30-49.
/*ref*/Sage RF, Christin PA, Edwards EJ. The C4 plant lineages of planet Earth. J Exp Bot. 2011;62(9):3155-3169. Doi: https://doi.org/10.1093/jxb/err048
/*ref*/Sage RF, Khoshravesh R, Sage TL. From proto-Kranz to C4 Kranz: Building the bridge to C4 photosynthesis. J Exp Bot. 2014;65(13):3341-3356. Doi: https://doi.org/10.1093/jxb/eru180
/*ref*/Sage RF, Sage TL, Kocacinar F. Photorespiration and the Evolution of C4 Photosynthesis. Annu Rev Plant Biol. 2012;63(1):19-47. Doi: https://doi.org/10.1146/annurev-arplant-042811-105511
/*ref*/Sage RF. Tracking the evolutionary rise of C4 metabolism. J Exp Bot. 2016;67(10):2919-2922. Doi: https://doi.org/10.1093/jxb/erw137
/*ref*/Sage RF. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol. 2001;3(3):202-213. Doi: https://doi.org/10.1055/s-2001-15206
/*ref*/Voznesenskaya E V., Koteyeva NK, Akhani H, Roalson EH, Edwards GE. Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. J Exp Bot. 2013;64(12):3583-3604. Doi: https://doi.org/10.1093/jxb/ert191
/*ref*/Zuloaga FO, Scataglini MA, Morrone O. A phylogenetic evaluation of Panicum sects. Agrostoidea, Megista, Prionitia and Tenera (Panicoideae, Poaceae): Two new genera, Stephostachys and Sorengia. Taxon. 2010;59(5):1535-1546. Doi: https://doi.org/10.1002/tax.595017
 
Rights Derechos de autor 2020 Acta Biológica Colombiana
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library