Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining

JOURNAL OF APPLIED INFORMATICS AND COMPUTING

View Publication Info
 
 
Field Value
 
Title Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining
 
Creator Derisma, D
 
Description Heart disease is a disease that contributes to a relatively high mortality rate. The rate of human death caused by disease in the heart is a widespread problem in the world. The main objective of this study is to predict people with heart disease using the publicly available dataset in the UCI Repository with the Heart Disease dataset. To obtain the best classification algorithm is by comparing three Algoritma Naive Bayes, Random Forest, Neural Network algorithms, which are frequently used to predict people with heart disease. Comparison results show that Naive Bayes ' algorithm is a precise and accurate algorithm used to predict people with heart disease with a percentage of 83 %.
 
Publisher Politeknik Negeri Batam
 
Date 2020-07-13
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/2152
10.30871/jaic.v4i1.2152
 
Source Journal of Applied Informatics and Computing (JAIC); Vol 4 No 1 (2020): Juli 2020; 84-88
Journal of Applied Informatics and Computing (JAIC); Vol 4 No 1 (2020): Juli 2020; 84-88
2548-6861
10.30871/jaic.v4i1
 
Language eng
 
Relation https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/2152/1142
 
Rights Copyright (c) 2020 D Derisma
http://creativecommons.org/licenses/by-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library