Perbandingan Metode Klasifikasi untuk Menentukan Tingkat Kenyamanan Suhu pada Kondisi Rileks Berbasis Sinyal EEG

ULTIMATICS

View Publication Info
 
 
Field Value
 
Title Perbandingan Metode Klasifikasi untuk Menentukan Tingkat Kenyamanan Suhu pada Kondisi Rileks Berbasis Sinyal EEG
Perbandingan Metode Klasifikasi untuk Menentukan Tingkat Kenyamanan Suhu pada Kondisi Rileks Berbasis Sinyal EEG
 
Creator Saputra, Laurentius Kuncoro Probo
Ratri, Ignatia Dhian Estu Karisma
 
Description Temperature control on air conditioner devices is still oriented to the target environment. This control mode ignores one's physiological condition. A person's thermal comfort varies when indoors. Thermal comfort is closely related to environmental thermal satisfaction conditions. EEG signal is a signal that can reflect brain activity. This research objective is provide classifier model for classifiying person’s thermal comfort based on eeg signal. This research used three conditions of room’s temperature. The features used by classfier are avarage frequency band, HFD, PFD, and MSE features. Classifier performance was assessed using ROC curve evaluation. The results of the classification of thermal comfort levels with EEG signals with the KNN classifier are obtained only by using the band frequency average feature, which is equal to 0.878 with a standard deviation of 0.022. While the SVM classifier gets the highest performance by using a combination of the average band + HFD frequency feature, which is 0.877 with a standard deviation of 0.013 in the linear kernel and RBF.
 
Publisher Program Studi Teknik Informatika UMN
 
Date 2019-03-19
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier http://ejournals.umn.ac.id/index.php/TI/article/view/992
10.31937/ti.v10i2.992
 
Source ULTIMATICS; Vol 10 No 2 (2018): Ultimatics : Jurnal Teknik Informatika; 93-97
Ultimatics : Jurnal Teknik Informatika; Vol 10 No 2 (2018): Ultimatics : Jurnal Teknik Informatika; 93-97
2581-186X
2085-4552
10.31937/ti.v10i2
 
Language eng
 
Relation http://ejournals.umn.ac.id/index.php/TI/article/view/992/725
 
Rights Copyright (c) 2018 ULTIMATICS
http://creativecommons.org/licenses/by-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library