Chloroquine and its derivatives in the management of COVID-19: a scoping review

Biomédica

View Publication Info
 
 
Field Value
 
Title Chloroquine and its derivatives in the management of COVID-19: a scoping review
Cloroquina y sus derivados en el manejo de la COVID-19: una revisión exploratoria
 
Creator Pimentel, Juan
Andersson, Neil
 
Subject chloroquine
hydroxychloroquine
coronavirus
systematic review
clinical trial
pandemics
SARS-CoV-2
cloroquina
hidroxicloroquina
coronavirus
revisión sistemática
ensayo clínico
pandemias
SARS-CoV-2
 
Description Introduction: Recently, researchers from China and France reported on chloroquine and hydroxychloroquine's effectiveness for inhibition of SARS-CoV-2 viral replication in vitro. Timely dissemination of scientific information is key in times of pandemic. A systematic review of the effect and safety of these drugs on COVID-19 is urgently needed.
Objective: Map published knowledge until March 25, 2020, on the use of chloroquine and its derivates in patients with COVID-19.
Materials and methods: a scoping review searched PubMed, Embase, Lilacs, and 15 registries from the WHO’s International Clinical Trials Registry Platform for theoretical and empirical research in English, Spanish, Italian, French, or Portuguese, until March 25, 2020. We conducted a narrative synthesis of the results.
Results: we included 19 records and 24 trial registries, (n=43) including 18,059 patients. China registered 66% (16/24) of the trials. Nine trials evaluate chloroquine exclusively and eight trials evaluate hydroxychloroquine exclusively. The records are comments (n=9), in vitro studies (n=3), narrative reviews (n=2), clinical guidelines (n=2), and a systematic review, an expert consensus, and a clinical trial.
Conclusions: One small, non-randomised, and flawed clinical trial (n=26) supports hydroxychloroquine use in patients with COVID-19. There is an urgent need for more clinical trial results to determine the effect and safety of chloroquine and hydroxychloroquine on COVID-19.
Introducción. Recientemente, investigadores chinos y franceses reportaron eficacia de la cloroquina e hidroxicloroquina para inhibir la replicación in vitro del virus SARS-CoV-2. La diseminación oportuna de la información científica es clave en tiempos de pandemia. Es urgente contar con una revisión sistemática sobre el efecto y seguridad de estos medicamentos en el COVID-19.
Objetivo. Describir el estado actual de la literatura científica publicada hasta marzo 25 de 2020, sobre el uso de la cloroquina o sus derivados en el manejo de pacientes con COVID-19.
Material y métodos. Revisión sistemática exploratoria que incluyó PubMed, Embase, Lilacs y 15 bases de datos de Plataforma de Registros Internacionales de Ensayos Clínicos de la OMS. Incluimos publicaciones empíricas y teóricas en inglés, español, italiano, francés, o portugués. Realizamos una síntesis narrativa de los resultados.
Resultados. Se incluyeron 19 documentos y 24 registros de ensayos clínicos, (n=43) sumando 18,059 pacientes. 66% (16/24) de los ensayos están registrados en China. Nueve ensayos evaluarán la cloroquina exclusivamente, y ocho la hidroxicloroquina exclusivamente. Los documentos son comentarios (n=9), estudios in vitro (n=3), revisiones narrativas (n=2), guías de práctica clínica (n=2), y revisión sistemática, consenso de expertos y ensayo controlado (n=1, respectivamente).
Conclusiones. Un ensayo clínico pequeño (n=26) no aleatorizado y con fallos, soporta el uso de hidroxicloroquina en pacientes con COVID-19. Se requiere de manera urgente tener acceso a resultados de ensayos clínicos adicionales para determinar la efectividad y seguridad de la cloroquina y sus derivados en pacientes con COVID-19.
 
Publisher Instituto Nacional de Salud
 
Date 2020-04-09
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://revistabiomedica.org/index.php/biomedica/article/view/5478
10.7705/biomedica.5478
 
Source Biomedica; Vol. 40 No. Supl. 2 (2020): Infecciones respiratorias
Biomédica; Vol. 40 Núm. Supl. 2 (2020): Infecciones respiratorias
2590-7379
0120-4157
 
Language spa
 
Relation https://revistabiomedica.org/index.php/biomedica/article/view/5478/4564
/*ref*/World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19. [Fecha de consulta: 23 de marzo de 2020]. Disponible en: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 2. World Health Organization. Coronavirus disease 2019. [Fecha de consulta: 8 de abril de 2020]. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 3. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6:67-9. https://doi.org/10.1016/S1473-3099(06)70361-9 4. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953-66. https://doi.org/10.1056/NEJMoa030781 5. Keyaerts E, Vijgen L, Maes P, Neyts J, Ranst M Van. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323:264-8. https://doi.org/10.1016/j.bbrc.2004.08.085 6. Yu IT-S, Qiu H, Tse LA, Wong TW. Severe acute respiratory syndrome beyond Amoy gardens: completing the incomplete legacy. Clin Infect Dis. 2014;58:683-6. https://doi.org/10.1093/cid/cit797 7. Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents. 2020;55:105923. https://doi.org/10.1016/j.ijantimicag.2020.105923 8. Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M, et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother. 2009;53:3416-21. https://doi.org/10.1128/AAC.01509-08 9. de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58:4875-84. https://doi.org/10.1128/AAC.03011-14 10. Rolain J-M, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30:297-308. https://doi.org/10.1016/j.ijantimicag.2007.05.015 11. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269-71. https://doi.org/10.1038/s41422-020-0282-0. 12. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;105938. https://doi.org/10.1016/j.ijantimicag.2020.105938 13. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 14. Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395:683-4. https://doi.org/10.1016/S0140-6736(20)30361-5 15. Ministerio de Salud y Protección Social - República de Colombia. Hidroxicloroquina y cloroquina se podrán usar para tratamiento de covid – 19. 2020 [Fecha de consulta: 8 de abril de 2020]. Disponible en: https://www.minsalud.gov.co/Paginas/Hidroxicloroquina-y-cloroquina-se-podran-usar-para-tratamiento-de-covid-–-19.aspx 16. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020;177:104762. https://doi.org/10.1016/j.antiviral.2020.104762 17. Song P, Karako T. COVID-19: Real-time dissemination of scientific information to fight a public health emergency of international concern. Biosci Trends. 2020;14:1–2. https://doi.org/10.5582/bst.2020.01056 18. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19-32. https://doi.org/10.1093/geront/gnz021 19. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. https://doi.org/10.1186/1748-5908-5-69 20. World Health Organization. WHO Registry Network. 2020 [Fecha de consulta: 25 de marzo de 2020]. Disponible en: https://www.who.int/ictrp/network/primary/en/ 21. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4 22. Grudniewicz A, Nelson M, Kuluski K, Lui V, Cunningham H V., X Nie J, et al. Treatment goal setting for complex patients: protocol for a scoping review. BMJ Open. 2016;6:e011869. https://doi.org/10.1136/bmjopen-2016-011869. 23. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169:467. https://doi.org/10.7326/M18-0850 24. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14:72-73. https://doi.org/10.5582/bst.2020.01047 25. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa237 26. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. https://doi.org/10.1038/s41421-020-0156-0 27. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;105949. https://doi.org/10.1016/j.ijantimicag.2020.105949 28. Wilson P. COVID-19, Hydroxychloroquine, and the Death of Evidence-Based Medicine. The Methods Man. 2020 [Fecha de consulta: 2 de abril de 2020]. Disponible en: https://www.methodsman.com/blog/covid-19-evidence 29. Hinton DM. US Food & Drug Administration Emergency Use Autorization for chloroquine phosphate and hydroxychloroquine sulfate use for the treatment of COVID-19. 2020. p. 1–8. [Fecha de consulta: 2 de abril de 2020]. Disponible en: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f398f8a9-92f3-47cb-81c2-6078806a464d 30. U.S. Department of Health and Human Services (HHS). HHS accepts donations of medicine to Strategic National Stockpile as possible treatments for COVID-19 patients | HHS.gov. News. 2020 [Fecha de consulta: 2 de abril de 2020]. Disponible en: https://www.hhs.gov/about/news/2020/03/29/hhs-accepts-donations-of-medicine-to-strategic-national-stockpile-as-possible-treatments-for-covid-19-patients.html# 31. O’Brien N, Hong QN, Law S, Massoud S, Carter A, Kaida A, et al. Health system features that enhance access to comprehensive primary care for women living with hiv in high-income settings: a systematic mixed studies review. AIDS Patient Care STDS. 2018;32:129-48. https://doi.org/10.1089/apc.2017.0305 32. Alvarado-Castro V, Paredes-Solís S, Nava-Aguilera E, Morales-Pérez A, Alarcón-Morales L, Balderas-Vargas NA, et al. Assessing the effects of interventions for Aedes aegypti control: systematic review and meta-analysis of cluster randomised controlled trials. BMC Public Health. 2017;17(Supl.1):384. https://doi.org/10.1186/s12889-017-4290-z 33. Shalabi D, Mitchell S, Andersson N. Review of Gender Violence Among Arab Immigrants in Canada: Key Issues for Prevention Efforts. J Fam Violence. 2015;30:817–25. https://doi.org/10.1007/s10896-015-9718-6 34. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, et al. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7. https://doi.org/10.1186/1471-2288-7-10 35. Pimentel J, Arias A, Ramírez D, Molina A, Chomat A-M, Cockcroft A, et al. Game-based learning interventions to foster cross-cultural care training: a scoping review. Games Health J. 2020. https://doi.org/10.1089/g4h.2019.0078. 36. Pimentel J, Ansari U, Omer K, Gidado Y, Baba MC, Andersson N, et al. Factors associated with short birth interval in low- and middle-income countries: a systematic review. BMC Pregnancy Childbirth. 2020;20:156. https://doi.org/10.1186/s12884-020-2852-z 37. Peters MDJ, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015;13:141-6. https://doi.org/10.1097/XEB.0000000000000050.
 
Rights Derechos de autor 2020 Biomédica
https://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library