ANALISA PERBANDINGAN METODE SIMULATED ANNEALING DAN LARGE NEIGHBORHOOD SEARCH UNTUK MEMECAHKAN MASALAH LOKASI DAN RUTE KENDARAAN DUA ESELON

Jurnal Manajemen Industri dan Logistik

View Publication Info
 
 
Field Value
 
Title ANALISA PERBANDINGAN METODE SIMULATED ANNEALING DAN LARGE NEIGHBORHOOD SEARCH UNTUK MEMECAHKAN MASALAH LOKASI DAN RUTE KENDARAAN DUA ESELON
 
Creator (Universitas Singaperbangsa Karawang), Winarno
Redi (Universitas Pertamina), A. A. N. Perwira
 
Subject Industrial Management
Two-Echelon Location Routing Problem; Simulated Annealing; Large Neighborhood Search
 
Description AbstractTwo-echelon location routing problem (2E-LRP) is a problem that considers distribution problem in a two-level / echelon transport system. The first echelon considers trips from a main depot to a set of selected satellite. The second echelon considers routes to serve customers from the selected satellite. This study proposes two metaheuristics algorithms to solve 2E-LRP: Simulated Annealing (SA) and Large Neighborhood Search (LNS) heuristics. The neighborhood / operator moves of both algorithms are modified specifically to solve 2E-LRP. The proposed SA uses swap, insert, and reverse operators. Meanwhile the proposed LNS uses four destructive operator (random route removal, worst removal, route removal, related node removal, not related node removal) and two constructive operator (greedy insertion and modived greedy insertion). Previously known dataset is used to test the performance of the both algorithms. Numerical experiment results show that SA performs better than LNS. The objective function value for SA and LNS are 176.125 and 181.478, respectively. Besides, the average computational time of SA and LNS are 119.02s and 352.17s, respectively.AbstrakPermasalahan penentuan lokasi fasilitas sekaligus rute kendaraan dengan mempertimbangkan sistem transportasi dua eselon juga dikenal dengan two-echelon location routing problem (2E-LRP) atau masalah lokasi dan rute kendaraan dua eselon (MLRKDE). Pada eselon pertama keputusan yang perlu diambil adalah penentuan lokasi fasilitas (diistilahkan satelit) dan rute kendaraan dari depo ke lokasi satelit terpilih. Pada eselon kedua dilakukan penentuan rute kendaraan dari satelit ke masing-masing pelanggan mempertimbangan jumlah permintaan dan kapasitas kendaraan. Dalam penelitian ini dikembangkan dua algoritma metaheuristik yaitu Simulated Annealing (SA) dan Large Neighborhood Search (LNS). Operator yang digunakan kedua algoritma tersebut didesain khusus untuk permasalahan MLRKDE. Algoritma SA menggunakan operator swap, insert, dan reverse. Algoritma LNS menggunakan operator perusakan (random route removal, worst removal, route removal, related node removal, dan not related node removal) dan perbaikan (greedy insertion dan modified greedy insertion). Benchmark data dari penelitian sebelumnya digunakan untuk menguji performa kedua algoritma tersebut. Hasil eksperimen menunjukkan bahwa performa algoritma SA lebih baik daripada LNS. Rata-rata nilai fungsi objektif dari SA dan LNS adalah 176.125 dan 181.478. Waktu rata-rata komputasi algoritma SA and LNS pada permasalahan ini adalah 119.02 dan 352.17 detik.
 
Publisher Politeknik APP Jakarta
 
Contributor
 
Date 2020-06-09
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
 
Format application/pdf
 
Identifier https://jurnal.poltekapp.ac.id/index.php/JMIL/article/view/311
10.30988/jmil.v4i1.311
 
Source Jurnal Manajemen Industri dan Logistik; Vol 4, No 1 (2020): page 01 - 83; 35-46
2598-5795
2622-528X
10.30988/jmil.v4i1
 
Language eng
 
Relation https://jurnal.poltekapp.ac.id/index.php/JMIL/article/view/311/pdf
 
Coverage


 
Rights Copyright (c) 2020 Winarno Winarno, Anak Agung Ngurah Perwira Redi
https://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library