Human olfactory mesenchymal stromal cells co-expressing horizontal basal and ensheathing cell proteins in culture

Biomédica

View Publication Info
 
 
Field Value
 
Title Human olfactory mesenchymal stromal cells co-expressing horizontal basal and ensheathing cell proteins in culture
Las células mesenquimales del estroma olfatorio humano coexpresan proteínas de las células basales horizontales y de recubrimiento neural en cultivo.
 
Creator Ayala-Grosso, Carlos
Pieruzzini, Rosalinda
Vargas-Saturno, Leslie
Cardier, José E.
 
Subject Olfactory mucosa
homeostasis
mesenchymal stem cells
mucosa olfatoria
homeostasis
células madre mesenquimales
 
Description Introduction: The olfactory neuro-epithelium has an intrinsic capability of renewal during lifetime provided by the existence of globose and horizontal olfactory precursor cells. Additionally, mesenchymal stromal olfactory cells also support the homeostasis of the olfactory mucosa cell population. Under in vitro culture conditions with Dulbecco modified eagle/F12 medium supplemented with 10% fetal bovine serum, tissue biopsies from upper turbinate have generated an adherent population of cells expressing mainly mesenchymal stromal phenotypic markers. A closer examination of these cells has also found co-expression of olfactory precursors and ensheathing cell phenotypic markers. These results were suggestive of a unique property of olfactory mesenchymal stromal cells as potentially olfactory progenitor cells.Objective: To study whether the expression of these proteins in mesenchymal stromal cells is modulated upon neuronal differentiation.Materials and methods: We observed the phenotype of olfactory stromal cells under DMEM/F12 plus 10% fetal bovine serum in comparison to cells from spheres induced by serum-free medium plus growth factors inducers of neural progenitors.Results: The expression of mesenchymal stromal (CD29+, CD73+, CD90+, CD45-), horizontal basal (ICAM-1/CD54+, p63+, p75NGFr+), and ensheathing progenitor cell (nestin+, GFAP+) proteins was determined in the cultured population by flow cytometry. The determination of Oct 3/4, Sox-2, and Mash-1 transcription factors, as well as the neurotrophins BDNF, NT3, and NT4 by RT-PCR in cells, was indicative of functional heterogeneity of the olfactory mucosa tissue sample. Conclusions: Mesenchymal and olfactory precursor proteins were downregulated by serum-free medium and promoted differentiation of mesenchymal stromal cells into neurons and astroglial cells.
Introducción. El recambio celular del neuroepitelio olfatorio ocurre durante la vida del individuo gracias a precursores olfatorios. Además, las células mesenquimales del estroma también contribuyen a la homeostasis de la mucosa. Cuando un explante de una biopsia de mucosa se cultiva en un medio esencial mínimo, se genera una población predominante de células adherentes que expresan proteínas típicas de las células mesenquimales del estroma. La coexpresión de marcadores fenotípicos de precursores olfatorios y de células del recubrimiento del nervio olfatorio constituiría una propiedad única de las células mesenquimales del estroma.Objetivo. Determinar si la diferenciación celular de las células mesenquimales hacia fenotipos neurales modula la expresión de los marcadores mesenquimales característicos.Materiales y métodos. Se compararon las células aisladas de la mucosa olfatoria en un medio de cultivo con suplemento de 10 % de suero fetal bovino con esferas generadas en un medio sin suero más factores de crecimiento.Resultados. Se determinó la expresión de proteínas de las células mesenquimales del estroma (CD29+, CD73+, CD90+, CD45-), de las basales horizontales (ICAM-1/CD54+, p63+, p75NGFr+), y de las del recubrimiento del nervio olfatorio (nestin+, GFAP+) en la misma población cultivada. La determinación de Oct 3/4, Sox-2 y Mash-1, así como de las neurotrofinas BDNF, NT3 y NT4, sugirió que las células del estroma son funcionales. La expresión de las proteínas de las células mesenquimales y los precursores olfatorios, disminuyó en las células de las mesenesferas inducidas por ausencia de suero en el medio de cultivo.Conclusión. Las células mesenquimales del estroma de la mucosa olfatoria presentan una tendencia dominante hacia la diferenciación neural.
 
Publisher Instituto Nacional de Salud
 
Date 2020-03-01
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
text/xml
 
Identifier https://revistabiomedica.org/index.php/biomedica/article/view/4762
10.7705/biomedica.4762
 
Source Biomedica; Vol. 40 No. 1 (2020); 72-88
Biomédica; Vol. 40 Núm. 1 (2020); 72-88
2590-7379
0120-4157
 
Language spa
eng
 
Relation https://revistabiomedica.org/index.php/biomedica/article/view/4762/4352
https://revistabiomedica.org/index.php/biomedica/article/view/4762/4540
/*ref*/Schwob JE, Jang W, Holbrook EH, Holbrook EH, Lin B, Herrick DB, et al. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol. 2017;525:1034-54. https://doi.org/10.1002/cne.24105 2. Schwob JE, Jang W, Holbrook EH. Stem cells of the olfactory epithelium. In: Rao MS, editor. Neural development and stem cells. 3rd edition. New York: Springer Science Business Media; 2012. p. 201-22. 3. Graziadei PP. Cell dynamics in the olfactory mucosa. Tissue Cell. 1973;5:113-31. 4. Jang W, Youngentob SL, Schwob JE. Globose basal cells required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 2003;460:123-40. https://doi.org/10.1002/cne.10642 5. Carter LA, MacDonald JL, Roskams AJ. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci. 2004;24:5670-83. https://doi.org/10.1523/JNEUROSCI.0330-04.2004 6. Fletcher RB, Prasol MS, Estrada J, Baudhuin A, Vranizan K, Choi YG, et al. p63 regulates olfactory stem cell self-renewal and differentiation. Neuron. 2011;72:748-59. https://doi.org/10.1016/j.neuron.2011.09.009 7. Holbrook EH, Wu E, Curry WT, Lin DT, Schwob JE. Immunohistochemical characterization of human olfactory tissue. Laryngoscope. 2011;121:1687-701. https://doi.org/10.1002/lary.21856 8. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells. 2006;24:1054-64. https://doi.org/10.1634/stemcells.2005-0370 9. Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC. A novel medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther. 2010;1:8. https://doi.org/10.1186/scrt8 10. Delorme B, Nivet E, Gaillard J, Häupl T, Ringe J, Devèze A, et al. The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev. 2010;19:853-66. https://doi.org/10.1089/scd.2009.0267 11. Lindsay SL, Riddell JS, Barnett SC. Olfactory mucosa for transplant-mediated repair: A complex tissue for a complex injury? Glia. 2010;58:125-34. https://doi.org/10.1002/glia.20917 12. Lindsay SL, Johnstone SA, Mountford JC, Sheikh S, Allan DB, Clark L, et al. Human mesenchymal stem cells isolated from olfactory biopsies but not bone enhance CNS myelination in vitro. Glia. 2013;61:368-82. https://doi.org/10.1002/glia.22440 13. Fernández VB, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA. Mesenchymal stem cells and their use in therapy: What has been achieved? Differentiation. 2013;85:1-10. https://doi.org/10.1016/j.diff.2012.08.004 14. Lindsay SL, Toft A, Griffin J, M M Emraja A, Barnett SC, Riddell JS. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co-ordination after spinal cord injury. Glia. 2017;65:639-56. https://doi.org/10.1002/glia.23117 15. Girard SD, Devéze A, Nivet E, Gepner B, Roman FS, Féron F. Isolating nasal olfactory stem cells from rodents or humans. J Vis Exp. 2011;54:1-5. https://doi.org/10.3791/2762 16. Hahn CG, Han LY, Rawson NE, Mirza N, Borgmann-Winter K, Lenox RH, et al. In vivo and in vitro neurogenesis in human olfactory epithelium. J Comp Neurol. 2005;483:154-63. https://doi.org/10.1002/cne.20424 17. Heng BC, Cao T, Stanton LW, Robson P, Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 2004;19:1379-94. https://doi.org/10.1359/JBMR.040714 18. Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2007;41(Suppl.1):94-114. https://doi.org/10.1111/j.1365-2184.2008.00486.x 19. Marshall CT, Lu C, Winstead W, Zhang X, Winstead W, Zhang X, et al. The therapeutic potential of human olfactory-derived stem cells. Histol Histopathol. 2006;21:633-43. https://doi.org/10.14670/HH-21.633 20. Leung CT, Coulombe PA, Reed RR. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci. 2007;10:720-6. https://doi.org/10.1038/nn1882 21. Nivet E, Vignes M, Girard SD, Pierrisnard C, Baril N, Devèze A, et al. Engraftment of human nasal olfactory stem cells restores neuroplasticity in mice with hippocampal lesions. J Clin Invest. 2011;121:2808-20. https://doi.org/10.1172/JCI44489 22. Ramón-Cueto A, Cordero MI, Santos-Benito FF, Ávila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000;25:425-35. https://doi.org/10.1016/S0896-6273(00)80905-8 23. Ayala-Grosso CA, Pieruzzini R, Diaz-Solano D, Wittig O, Abrante L, Vargas L, et al. Amyloid-aβ peptide in olfactory mucosa and mesenchymal stromal cells of mild cognitive impairment and Alzheimer’s disease patients. Brain Pathol. 2015;25:136-45. https://doi.org/10.1111/bpa.12169 24. Solís-Chagoyán H, Flores-Soto E, Reyes-García J, Valdés-Tovar M, Calixto E, Montaño LM, et al. Voltage-activated calcium channels as functional markers of mature neurons in human olfactory neuroepithelial cells: Implications for the study of neurodevelopment in neuropsychiatric disorders. Int J Mol Sci. 2016;17. https://doi.org/10.3390/ijms17060941 25. Cercós MG, Galván-Arrieta T, Valdés-Tovar M, Solís-Chagoyán H, Argueta J, Benítez-King G, et al. Abnormally increased secretion in olfactory neuronal precursors from a case of schizophrenia is modulated by melatonin: A pilot study. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18071439 26. Galván-Arrieta T, Trueta C, Cercós MG, Valdés-Tovar M, Alarcón S, Oikawa J, et al. The role of melatonin in the neurodevelopmental etiology of schizophrenia: A study in human olfactory neuronal precursors. J Pineal Res. 2017;63. https://doi.org/10.1111/jpi.12421 27. Lavoie J, Gassó Astorga P, Segal-Gavish H, Wu YC, Chung Y, Cascella NG, et al. The olfactory neural epithelium as a tool in neuroscience. Trends Mol Med. 2017;23:100-3. https://doi.org/10.1016/j.molmed.2016.12.010 28. Masurkar AV, Devanand DP. Olfactory dysfunction in the elderly: Basic circuitry and alterations with normal aging and Alzheimer’s disease. Curr Geriatr Rep. 2014;3:91-100. https://doi.org/10.1007/s13670-014-0080-y 29. Jiménez-Vaca AL, Benítez-King G, Ruiz V, Ramírez-Rodríguez GB, Hernández-de la Cruz B, Salamanca-Gómez FA, et al. Exfoliated human olfactory neuroepithelium: A source of neural progenitor cells. Mol Neurobiol. 2018;55:2516-23. https://doi.org/10.1007/s12035-017-0500-z 30. Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8:329-39. https://doi.org/10.1038/nrneurol.2012.80 31. Murrell W, Féron F, Wetzig A, Cameron N, Splatt K, Bellette B, et al. Multipotent stem cells from adult olfactory mucosa. Dev Dyn. 2005;233:496-515. https://doi.org/10.1002/dvdy.20360 32. Zhang X, Klueber KM, Guo Z, Lu C, Roisen FJ. Adult human olfactory neural progenitors cultured in defined medium. Exp Neurol. 2004;186:112-23. https://doi.org/10.1016/j.expneurol.2003.10.022 33. Lovell MA, Jafek BW, Moran DT, Rowley JC 3rd. Biopsy of human olfactory mucosa. An instrument and a technique. Arch Otolaryngol. 1982;108:247-9. 34. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem.1997;64:295-312. 35. Murdoch B, Roskams AJ. Olfactory epithelium progenitors: Insights from transgenic mice and in vitro biology. J Mol Histol. 2007;38:581-99. https://doi.org/10.1007/s10735-007-9141-2 36. Wislet-Gendebien S, Bruyère F, Hans G, Leprince P, Moonen G, Rogister B. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci. 2004;5:33. https://doi.org/10.1186/1471-2202-5-33 37. Wislet-Gendebien S, Leprince P, Moonen G, Rogister B. Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci. 2003;116:3295-302. https://doi.org/10.1242/jcs.00639 38. Mark P, Kleinsorge M, Gaebel R, Lux CA, Toelk A, Pittermann E, et al. Human mesenchymal stem cells display reduced expression of CD105 after culture in medium. Stem Cells Int. 2013;2013:698076. https://doi.org/10.1155/2013/698076 39. Othman M, Lu C, Klueber K, Winstead W, Roisen F. Clonal analysis of adult human olfactory neurosphere forming cells. Biotech Histochem. 2005;80:189-200. https://doi.org/10.1080/10520290500469777 40. Krolewski RC, Jang W, Schwob JE. The generation of olfactory epithelial neurospheres in vitro predicts engraftment capacity following transplantation in vivo. Exp Neurol. 2011;229:308-23. https://doi.org/10.1016/j.expneurol.2011.02.014
 
Rights Derechos de autor 2020 Biomédica
https://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library