Quantitative analysis of the expression of fluconazole-resistant genes in strains of Candida albicans isolated from elderly people at their admission in an intensive care unit in Manizales, Colombia

Biomédica

View Publication Info
 
 
Field Value
 
Title Quantitative analysis of the expression of fluconazole-resistant genes in strains of Candida albicans isolated from elderly people at their admission in an intensive care unit in Manizales, Colombia
Análisis cuantitativo de la expresión de genes de resistencia a fluconazol en cepas de Candida albicans aisladas al ingreso de adultos mayores a una unidad de cuidados intensivos de Manizales, Colombia
 
Creator Rojas, Ana Elisa
Pérez, Jorge Enrique
Hernández, Johan Sebastián
Zapata, Yuliana
 
Subject Candida albicans
fluconazole
drug resistance, fungal
drug resistance, multiple, fungal
Candida albicans
luconazol
farmacorresistencia fúngica
farmacorresistencia fúngica múltiple
 
Description Introduction: Opportunistic infections associated with Candida albicans have had a great impact on public health due to the mortality they generate in certain population groups. Although pharmacological treatments are available, the resistance developed by the pathogen has become increasingly evident. For this reason, determining the mechanisms of resistance associated with the strains found in different hospital areas is important since it would help improving treatment plans.Objective: To analyze the expression of ERG11, CDR1, and MDR1 genes in strains of C. albicans isolated from elderly patients at admittance in the intensive care unit of Hospital Santa Sofía in Manizales, Colombia.Materials and methods: A total of 29 samples (21 resistant and 8 sensitive) were selected and distributed in two working groups: with and without exposure to fluconazole. The extracted RNA was quantified by real-time reverse transcription polymerase chain reaction (RT-qPCR).Results: Significant differences were found in the expression of the MDR1 gene in the group of resistant C. albicans strains. Two of the resistant strains (104 and 62-2) exposed to the antifungal showed very high values in the expression of this gene. The expression of ERG11 and CDR1 was not significant among the groups studied.Conclusion: The increased overexpression of the MDR1 gene indicates that it may be responsible for the resistance. However, some resistant strains did not overexpress any of the genes analyzed, which indicates that there may be other genes involved in the resistance of the strains under study.
Introducción. Las infecciones oportunistas asociadas con Candida albicans han tenido gran repercusión en la salud pública por la mortalidad que generan en determinados grupos poblacionales. Aunque existen tratamientos farmacológicos disponibles, es evidente el aumento de la resistencia desarrollada por el agente patógeno, por lo que la determinación de los mecanismos de resistencia de las cepas presentes en las áreas hospitalarias es importante, ya que permitiría plantear mejores esquemas de tratamiento.Objetivo. Analizar la expresión de los genes ERG11, CDR1 y MDR1 en cepas de C. albicans aisladas de adultos mayores a su ingreso en la unidad de cuidados intensivos del Hospital Santa Sofía de Manizales, Colombia.Materiales y métodos. Se seleccionaron 29 muestras (21 resistentes y 8 sensibles) y se conformaron dos grupos de trabajo, uno de muestras con exposición al fluconazol y el otro sin esta. El ARN extraído se cuantificó mediante reacción en cadena de la polimerasa con transcriptasa inversa en tiempo real (RT-qPCR).Resultados. Se encontraron diferencias significativas en la expresión del gen MDR1 en el grupo de cepas de C. albicans resistentes. Dos de las cepas resistentes (104 y 62-2) expuestas al antifúngico presentaron valores muy elevados en la expresión de este gen. La expresión del ERG11 y del CDR1 no fue significativa en los grupos estudiados. Conclusión. El aumento de sobreexpresión del gen MDR1 indica que este puede ser el responsable de la resistencia; sin embargo, algunas cepas resistentes no sobreexpresaron los genes analizados, lo que indica que puede haber otros genes involucrados en la resistencia de las cepas estudiadas.
 
Publisher Instituto Nacional de Salud
 
Date 2020-03-01
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
text/xml
 
Identifier https://revistabiomedica.org/index.php/biomedica/article/view/4723
10.7705/biomedica.4723
 
Source Biomedica; Vol. 40 No. 1 (2020); 153-165
Biomédica; Vol. 40 Núm. 1 (2020); 153-165
2590-7379
0120-4157
 
Language spa
 
Relation https://revistabiomedica.org/index.php/biomedica/article/view/4723/4362
https://revistabiomedica.org/index.php/biomedica/article/view/4723/4546
/*ref*/Hasan F, Xess I, Wang X, Jain N, Fries BC. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 2009;11:753-61. https://doi.org/10.1016/j.micinf.2009.04.018 2. Andes D. Clinical utility of antifungal pharmacokinetics and pharmacodynamics. Curr Opin Infect Dis. 2004;17:533-40. 3. Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503-35. https://doi.org/10.1086/596757 4. Cortés JA, Reyes P, Gómez C, Buitrago G, Leal AL. Fungal bloodstream infections in tertiary care hospitals in Colombia. Rev Iberoam Micol. 2011;28:74-8. https://doi.org/10.1016/j.riam.2010.12.002 5. De Bedout C, Ayabaca J, Vega R, Méndez M, Santiago ÁR. Evaluación de la susceptibilidad de especies de Candida al fluconazol por el método de difusión de disco. Biomédica. 2003;23:31-7. https://doi.org/10.7705/biomedica.v23i1.1195 6. Gutiérrez C, De Bedout C, Tobón AM, Cano LE, Arango M, Tabares AM, et al. Sensibilidad a fluconazol y voriconazol de aislamientos de Candida spp., obtenidos de mucosa oral de pacientes con sida. Infectio. 2008;11:183-9. 7. Duque C, Gómez B, Uribe O, Alarcón J, Soto F, Urán L, et al. Caracterización de la candidiasis vulvovaginal en mujeres de la ciudad de Medellín, Colombia. Nova. 2009;7:157-60. 8. Maldonado NA, Cano LE, De Bedout C, Arbeláez CA, Roncancio G, Tabares AM, et al. Association of clinical and demographic factors in invasive candidiasis caused by fluconazoleresistant Candida species: A study in 15 hospitals, Medellín, Colombia 2010-2011. Diagn Microbiol Infect Dis. 2014;79:280-6. https://doi.org/10.1016/j.diagmicrobio.2014.02.003 9. Hernández JS. Estudio básico-clínico de la colonización de especies de candida en adultos mayores al ingreso de cuidados intensivos (tesis). Manizales: Universidad de Caldas; 2015. 10. Kanafani ZA, Perfect JR. Resistance to antifungal agents: Mechanisms and clinical impact. Clin Infect Dis. 2008;46:120-8. https://doi.org/10.1086/524071 11. Pemán J, Cantón E, Espinel-Ingroff A. Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther. 2009;7:453-60. https://doi.org/10.1586/eri.09.18 12. Rocha MF, Bandeira SP, De Alencar LP, Melo LM, Sales JA, Paiva M de AN, et al. Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression. Mycoses. 2017;60:462-8. https://doi.org/10.1111/myc.12611 13. Mandal A, Kumar A, Singh A, Lynn AM, Kapoor K, Prasad R. A key structural domain of the Candida albicans Mdr1 protein. Biochem J. 2012;445:313-22. https://doi.org/10.1042/BJ20120190 14. White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate, with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997;41:1482-7. https://doi.org/10.1128/AAC.41.7.1482 15. Joseph-Horne T, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett. 1997;149:141-9. https://doi.org/10.1111/j.1574-6968.1997.tb10321.x 16. Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002;359:1135-44. https://doi.org/10.1016/S01406736(02)08162-X 17. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611-22. https://doi.org/10.1373/clinchem.2008.112797 18. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeast. Third edition. Wayne: CLSI; 2008. 19. Chau AS, Mendrick CA, Sabatelli FJ, Mcnicholas PM, Loebenberg D. Application of realtime quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother. 2004;48:2124-31. https://doi.org/10.1128/AAC.48.6.2124-2131.2004 20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262 21. Zuluaga A, de Bedout C, Agudelo CA, Hurtado H, Arango M, Restrepo Á, et al. Sensibilidad a fluconazol y voriconazol de especies de Candida aisladas de pacientes provenientes de unidades de cuidados intensivos en Medellín, Colombia (2001-2007). Rev Iberoam Micol. 2010;27:125-9. https://doi.org/10.1016/j.riam.2010.04.001 22. White TC, Holleman S, Dy F, Stevens DA, Mirels LF. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother. 2002;46:1704-13. https://doi.org/10.1128/AAC.46.6.1704-1713.2002 23. Perea S, López-Ribot JL, Kirkpatrick WR, Mcatee RK, Santillán RA, Martínez M, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45:2676-84. https://doi.org/10.1128/AAC.45.10.2676–2684.2001 24. Mane A, Vidhate P, Kusro C, Waman V, Saxena V, Kulkarni-Kale U, et al. Molecular mechanisms associated with fluconazole resistance in clinical Candida albicans isolates from India. Mycoses. 2016;59:93-100. https://doi.org/10.1111/myc.12439 25. Salari S, Khosravi AR, Mousavi SAA, Nikbakht-Brojeni GH. Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from Iranian HIV-infected patients with oropharyngeal candidiasis. J Mycol Med. 2016;26:35-41. https://doi.org/10.1016/j.mycmed.2015.10.007 26. Tavakoli M, Zaini F, Kordbacheh M, Safara M, Raoofian R, Heidari M. Upregulation of the ERG11 gene in Candida krusei by azoles. Daru. 2010;18:276-80. 27. Hiller D, Sanglard D, Morschhauser J. Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob Agents Chemother. 2006;50:1365-71. https://doi.org/10.1128/AAC.50.4.1365-1371.2006 28. Correa RA. Evaluación de mutaciones del gen ERG11 como causa de resistencia al fluconazol en aislamientos clinicos de pacientes colonizados por C. albicans obtenidas de adultos mayores en la unidad de cuidado intensivo del Hospital Santa Sofía de Manizales - Colombia (tesis). Manizales: Universidad de Caldas; 2016. 29. Franz R, Kelly SL, Lamb DC, Kelly DE, Ruhnke M, Morschhäuser J. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother. 1998;42:3065-72. https://doi.org/10.1128/AAC.42.12.3065 30. Franz R, Ruhnke M, Morschhäuser J. Molecular aspects of fluconazole resistance development in Candida albicans. Mycoses. 1999;42:453-8. https://doi.org/10.1046/j.1439-0507.1999.00498.x 31. López-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, et al. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother. 1998;42:2932-7. https://doi.org/10.1128/AAC.42.11.2932 32. Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995;39:2378-86. https://doi.org/10.1128/AAC.39.11.2378 33. Khosravi Rad K, Falahati M, Roudbary M, Farahyar S, Nami S. Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis. Curr Med Mycol. 2016;2:24-9. https://doi.org/10.18869/acadpub.cmm.2.4.24 34. Wirsching S, Michel S, Köhler G, Morschhäuser J. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol. 2000;182:400-4. https://doi.org/10.1128/JB.182.2.400-404.2000 35. Wirsching S, Michel SM. Targeted gene disruption in Candida albicans wild-type strains: The role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol. 2000;36:856-65. https://doi.org/10.1046/j.1365-2958.2000.01899.x 36. Wirsching S, Moran GP, Sullivan DJ, Coleman DC. MDR1-mediated drug resistance in Candida dubliniensis. Antimicrob Agents Chemother. 2001;45:3416-21. https://doi.org/10.1128/AAC.45.12.3416-3421.2001 37. Karababa M, Coste AT, Rognon B, Bille J, Sanglard D. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother. 2004;48:3064-79. https://doi.org/10.1128/AAC.48.8.3064-3079.2004 38. Kusch H, Biswas K, Schwanfelder S, Engelmann S, Rogers PD, Hecker M, et al. A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains. Mol Genet Genomics. 2004;271:554-65. https://doi.org/10.1007/s00438-004-0984-x 39. Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Society. 2003;47:1220-7. https://doi.org/10.1128/AAC.47.4.1220-1227.2003 40. Park S, Perlin DS. Establishing surrogate markers for fluconazole resistance in Candida albicans. Microb drug Resist. 2005;11:232-8. https://doi.org/10.1089/mdr.2005.11.232 41. Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. J Med Microbiol. 2011;60:1241-7. https://doi.org/10.1099/jmm.0.030692-0 42. Morschhäuser J, Barker KS, Liu TT, BlaB-Warmuth J, Homayouni R, Rogers PD. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 2007;3:1603-16. https://doi.org/10.1099/jmm.0.030692-0 43. Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother. 2013;57:3182-93. https://doi.org/10.1128/AAC.00555-13 44. Marchaim D, Lemanek L, Sobel JD, Kaye KS. Fluconazole-resistant Candida albicans vulvovaginitis. Obstet Gynecol. 2012;120:1407-14. https://doi.org/10.1097/AOG.0b013e31827307b2
 
Rights Derechos de autor 2020 Biomédica
https://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library