Physiological responses and antioxidant capacity of Chlorella vulgaris (Chlorellaceae) exposed to Phenanthrene

Acta Biológica Colombiana

View Publication Info
 
 
Field Value
 
Title Physiological responses and antioxidant capacity of Chlorella vulgaris (Chlorellaceae) exposed to Phenanthrene

Respuestas fisiológicas y capacidad antioxidante de Chlorella vulgaris (Chlorellaceae) expuesta a fenantreno
 
Creator Calderón-Delgado, Ivonne C.
Mora-Solarte, Diego A.
Velasco Santamaría, Yohana María
 
Subject Toxicología acuática
Antioxidante; hidrocarburo aromático policíclico; inhibición de crecimiento; microalga; toxicidad
Aquatic Toxicology
Antioxidant; growth inhibition; microalgae; polycyclic aromatic hydrocarbon; toxicity
Toxicologia aquática

 
Description Aromatic hydrocarbons have a high toxicological potential; therefore, their evaluation in aquatic organisms has great importance. The microalgae C. vulgaris was selected because it is one of the most dominant algae species in water and due to its potential to degrade or absorb different xenobiotics. The objective was to evaluate the toxicity in C. vulgaris exposed to phenanthrene (PHE), evaluating physiological parameters such as cell density, the content of chlorophyll a and chlorophyll b and enzymatic activity of superoxide dismutase (SOD) and catalase (CAT) to define short-term toxic responses. Five different concentrations (0.1; 1.0; 10; 100 and 1000 µg PHE. L-1), a solvent control treatment (acetone) and control (without additives) were evaluated for seven days. A dose-dependent behaviour was observed in all physiological responses, decreasing progressively with the increase in PHE concentrations. Cell density, growth rate, cell diameter, and chlorophyll can be considered biomarkers of toxicity. The activity of CAT and SOD in C. vulgaris decreased considerably during the entire study period, possibly due to excessive production of reactive oxygen species generated by exposure to phenanthrene causing the inhibition of these antioxidant enzymes. Despite the evident toxicity of this hydrocarbon observed in this study, C. vulgaris presents a high resistance and adaptation to this contaminant, so it is possible to infer that this microorganism can show toxicological effects in an environment with this contaminant in a short period.

Los hidrocarburos aromáticos tienen un alto potencial toxicológico, por lo que su evaluación en organismos acuáticos es de gran importancia. La microalga Chlorella vulgaris fue seleccionada, por ser una de las especies de algas más dominantes en el agua y por su potencial para degradar o absorber diferentes xenobióticos. El objetivo fue evaluar la toxicidad en C. vulgaris expuesta a fenantreno (PHE), evaluando parámetros fisiológicos como la densidad celular, contenido de clorofila a y clorofila b y actividad enzimática de superóxido dismutasa (SOD) y catalasa (CAT) que definan respuestas tóxicas a corto plazo. Se evaluaron cinco diferentes concentraciones (0,1; 1,0; 10; 100 y 1000 µg PHE. L-1), un tratamiento control solvente (acetona) y control (sin aditamentos) durante siete días. En todas las respuestas fisiológicas se observó un comportamiento dosis dependiente, disminuyendo progresivamente con el incremento de las concentraciones de PHE. La densidad celular, tasa de crecimiento, diámetro celular y clorofila pueden ser considerados biomarcadores de toxicidad. La actividad de CAT y SOD en C. vulgaris disminuyó considerablemente durante todo el periodo de estudio, posiblemente a causa de una excesiva producción de especies reactivas de oxígeno generadas por la exposición a fenantreno provocando la inhibición de estas enzimas antioxidantes. A pesar de la toxicidad de este hidrocarburo evidentemente observada en este estudio, C. vulgaris presenta una alta resistencia y adaptación a este contaminante, por lo que se puede decir que este microorganismo tiene la capacidad de evidenciar efectos toxicológicos en un entorno con este contaminante en un corto periodo de tiempo.
 
Publisher Universidad Nacional de Colombia - Sede Bogotá - Faculdad de Ciencias - Departamento de Biología
 
Contributor Dirección General de Investigaciones
Universidad de los Llanos
 
Date 2020-05-01
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion


 
Format application/pdf
 
Identifier https://revistas.unal.edu.co/index.php/actabiol/article/view/77783
10.15446/abc.v25n2.77783
 
Source Acta Biológica Colombiana; Vol. 25, Núm. 2 (2020): En prensa / In press
Acta Biológica Colombiana; Vol. 25, Núm. 2 (2020): En prensa / In press
1900-1649
0120-548X
 
Language spa
 
Relation https://revistas.unal.edu.co/index.php/actabiol/article/view/77783/pdf
/*ref*/Abou-Shanab RAI, Ji M-K, Kim H-C, Paeng K-J, Jeon B-H. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage. 2013;115(0):257-264.
/*ref*/Aebi H. [13] Catalase in vitro. In: Methods in Enzymology. Academic Press, 1984. p. 121-126.
/*ref*/Aguilera J, Rautenberger R. Oxidative stress tolerance strategies of intertidal macroalgae. In: Oxidative stress in aquatic ecosystems. 2011. p. 58-71.
/*ref*/Alayo M, Iannacone J. Ensayos ecotoxicologicos con petroleo crudo, diesel 2 y diesel 6 con dos subespecies de brachionus plicatilis müller 1786 (rotifera: Monogononta). Gayana 2002;66:45-58.
/*ref*/Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331-1341.
/*ref*/Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276-287.
/*ref*/Bellinger EG, Sigee DC. 2010. Freshwater lgae: Identification and Use as BioIndicators. WileyBlackwell, Chichester, UK, 271 ppBradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248-254.
/*ref*/Calderón-Delgado IC, Mora-Solarte DA, Velasco-Santamaría YM. Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation. Environ Monit Assess. 2019;191(6):399.
/*ref*/Carrera-Martinez D, Mateos-Sanz A, Lopez-Rodas V, Costas E. Adaptation of microalgae to a gradient of continuous petroleum contamination. Aquat Toxicol. 2011;101(2):342-350.
/*ref*/Corner EDS, Harris RP, Kilvington CC, O'Hara SCM. Petroleum compounds in the marine food web: short-term experiments on the fate of naphthalene in Calanus. J. Mar. Biol. Assoc. U. K. 2009;56(1):121-133.
/*ref*/Del Vento S, Dachs J. Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environ Toxicol Chem. 2002;21(10):2099-2107.
/*ref*/di Toppi LS, Musetti R, Marabottini R, Corradi MG, Vattuone Z, Favali MA, et al. Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium. Funct. Plant Biol. 2004;31(4):329-338.
/*ref*/Echeveste P, Agustí S, Dachs J. Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. Environ Pollut. 2010;158(1):299-307.
/*ref*/Elstner EF, Osswald W. Mechanisms of oxygen activation during plant stress. P Roy Soc Edinb B. 1994;102:131-154.
/*ref*/Fawaz EG, Salam DA, Kamareddine L. Evaluation of copper toxicity using site specific algae and water chemistry: Field validation of laboratory bioassays. Ecotox environ safe 2018;155:59-65.
/*ref*/Gao QT, Tam NFY. Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere. 2011;82(3):346-354.
/*ref*/Gómez LM y Ramírez Z. Microalgas como biomonitores de contaminación. Rev cuba quim. 2004;16(2):34-48
/*ref*/Juhasz AL, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo a pyrene. Int Biodeterior Biodegradation. 2000;45(1):57-88.
/*ref*/Kalhor AX, Movafeghi A, Mohammadi-Nassab AD, Abedi E, Bahrami A. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar Pollut Bull. 2017;123(1-2):286-290.
/*ref*/Khan AHA, Ayaz M, Arshad M, Yousaf S, Khan MA, Anees M, et al. Biogeochemical cycle, occurrence and biological treatments of polycyclic aromatic hydrocarbons (PAHs). Iran J Sci Technol A. 2019;43(3):1393-1410.
/*ref*/Kong Q, Zhu L, Shen X. The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. J Hazard Mater. 2010;178(1–3):282-286.
/*ref*/Lei A, Hu Z, Wong Y, Tam NF. Antioxidant responses of microalgal species to pyrene. J Appl Phycol. 2006;18(1):67-78.
/*ref*/Lima ALC, Eglinton TI, Reddy CM. High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. Environ. Sci. Technol. 2003;37(1):53-61.
/*ref*/Ma J. Differential sensitivity of three cyanobacterial and five green algal species to organotins and pyrethroids pesticides. Sci Total Environ. 2005;341(1–3):109-117.
/*ref*/Ma J, Lin F, Zhang R, Yu W, Lu N. Differential sensitivity of two green algae, Scenedesmus quadricauda and Chlorella vulgaris, to 14 pesticide adjuvants. Ecotox environ safe. 2004;58(1):61-67.
/*ref*/Mallick N, Helmuth FM. Reactive oxygen species: response of algal cells. J Plant Physiol. 2000;157(2):183-193.
/*ref*/Manahan SE. Fundamentals of environmental chemistry. 9th Edition ed. Boca Raton: CRC Press; 2009.
/*ref*/McGinn PJ, Dickinson KE, Park KC, Whitney CG, MacQuarrie SP, Black FJ, et al. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res. 2012;1(2):155-165.
/*ref*/Muñoz-Peñuela M, Ramírez-Merlano J, Otero-Paternina A, Medina-Robles V, Cruz-Casallas P, Velasco-Santamaría Y. Efecto del medio de cultivo sobre el crecimiento y el contenido proteico de Chlorella vulgaris. Rev Colomb Cienc Pecu. 2012(25):438-449.
/*ref*/OECD. Organization for Economic Cooperation and Development. Freshwater alga and cyanobacteria Growth Inhibition Test. Guidelines for the testing of chemicals. In: 2011. p. 201.
/*ref*/Ortiz-Moreno ML, Cortés-Castillo CE, Sánchez-Villarraga J, Padilla J, Otero-Paternina AM. Evaluación del crecimiento de la microalga chlorella sorokiniana en diferentes medios de cultivo en condiciones autotroficas y mixotroficas. Orinoquia. 2012;16:11-20.
/*ref*/Otero-Paternina A, Cruz-Casallas PE, Velasco-Santamaria YM. Evaluación del efecto del hidrocarburo fenantreno sobre el crecimiento de Chlorella vulgaris (CHLORELLACEAE). Acta Biolo Colomb. 2013;18:87-98.
/*ref*/Polonini HC, Brandao HM, Raposo NR, Brandao MAF, Mouton L, Couté A, et al. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Ecotoxicology. 2015;24(4):938-948.
/*ref*/Rai U, Singh N, Upadhyay A, Verma S. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour. Technol. 2013;136:604-609.
/*ref*/Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3. Ecotox Environ Safe. 2017;142:538-543.
/*ref*/Rodrigues LHR, Raya-Rodriguez MT, Fontoura NF. Algal density assessed by spectrophotometry: A calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J. Environ. Chem. Ecotoxicol. 2011;3(8):225-228.
/*ref*/Soto P, Gaete H, Hidalgo ME. Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat Am J Aquat Res. 2011;39:280-285.
/*ref*/van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol. 2003;13(2):57-149.
/*ref*/Wang L, Zheng B. Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. J Environ Sci. 2008;20(11):1363-1372.
/*ref*/Warren C. Rapid measurement of chlorophylls with a microplate reader. J Plant Nutr. 2008;31(7):1321-1332.
/*ref*/Yin Y, Wang X, Yang L, Sun Y y Guo H. Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene. Ecotoxicology. 2010;19(6):1102-1110.
/*ref*/Zhang Z, Hong H, Zhou J, Yu G. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Sci Total Environ. 2004;323(1-3):71-86.
 
Rights Copyright (c) 2020 Acta Biológica Colombiana
https://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library