Sistem Pakar Deteksi Dini Gejala Awal Diabetes Mellitus

IJCIT - Indonesian Journal on Computer and Information Technology

View Publication Info
 
 
Field Value
 
Title Sistem Pakar Deteksi Dini Gejala Awal Diabetes Mellitus
 
Creator Alfarobi, Ibnu
 
Subject
 
Description AbstrakDalam bidang kesehatan peran teknologi sangat dibutuhkan dan sangat membantu, khususnya dengan adanya sistem pakar deteksi dini gejala awal diabetes mellitus yang mampu memberikan informasi kepada masyarakat umum ada tidaknya gejala awal diabetes mellitus di dalam tubuhnya. Metode yang digunakan dalam perancangan Sistem Pakar ini adalah Forward Chainning karena dilakukan penelusuran berdasarkan aturan alur maju mencari sebab atau ciri yang dikeluhkan oleh pengguna lalu menghasilkan kesimpulan hasil identifikasi jenis diabetes yang diderita. Hasil dari pengujian sistem pakar ini ditentukan oleh gejala-gejala penyakit diabetes yang timbul. Sebagai contoh, identifikasi pertama yaitu dengan menggunakan pertanyaan P003 (Poliuri), P002 (Polidipsi), dan P001 (Polifagi) yang merupakan gejala klasik diabetes. Dari pertanyaan P001 jawabannya akan dibuat menjadi 2 kondisi, jika jawab “Tidak” maka dilanjutkan ke pertanyaan P006, P016 sampai menemukan hasil identifikasi tipe diabetes G003 (Pra Diabetes). Jika jawab “Ya” maka dilanjutkan ke pertanyaan P015, P018, P021 dan seterusnya sampai menemukan hasil identifikasi tipe diabetes yang lainnya. Penentuan hasil penelitian identifikasi tipe diabetes yang lebih lengkap dapat dilihat di gambar 3 (decision tree) serta mengacu pada keterangan tabel 1 (rule tipe DM). Sistem pakar ini dirancang dengan menggunakan software Visual Basic 6 dan software databasenya menggunakan Microsoft Access 2013.Kata kunci: sistem pakar, diabetes mellitus, forward chainning AbstractThe role of a technology in the health sector is needed and very helpful, especially with the expert system for early detection early symptoms of diabetes mellitus which is able to provide information to the general public the existence of early symptoms in their body. The method used in the design of Expert System is Forward Chainning as do advanced searches based workflow rules characteristics to look for or complained of by the user and produce conclusion of the identification of the type of diabetes suffered. The results of the expert system testing are determined by the symptoms of diabetes that arise. For example, the first identification is by using questions P003 (Poliuri), P002 (Polidipsi), and P001 (Polifagi) which are classic symptoms of diabetes. From the question P001 the answer will be made into 2 conditions, if the answer is "No" then proceed to question P006, P016 until you find the results of identifying the type of diabetes G003 (Pre Diabetes). If you answer "Yes" then proceed to questions P015, P018, P021 and so on until you find the results of identifying other types of diabetes. Determination of the results of a more complete identification of diabetes types can be seen in Figure 3 (decision tree) and refers to the description of table 1 (DM type rule). An expert system is designed by using Visual Basic 6 software and database software using Microsoft Access 2013.Keywords: expert system, diabetes mellitus, forward chainning
 
Publisher LPPM Universitas Bina Sarana Informatika
 
Contributor
 
Date 2019-06-17
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artikel yang dipeer-review
 
Format application/pdf
 
Identifier https://ejournal.bsi.ac.id/ejurnal/index.php/ijcit/article/view/5307
10.31294/ijcit.v4i1.5307
 
Source IJCIT; Vol 4, No 1 (2019): IJCIT Mei 2019
IJCIT (Indonesian Journal on Computer and Information Technology); Vol 4, No 1 (2019): IJCIT Mei 2019
2549-7421
2527-449X
10.31294/ijcit.v4i1
 
Language ind
 
Relation https://ejournal.bsi.ac.id/ejurnal/index.php/ijcit/article/view/5307/pdf_1
 
Rights ##submission.copyrightStatement##
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library