Análisis del exoesqueleto para la recuperación del daño en el sistema locomotor a partir de un sensor para la extensión y flexión del brazo

Publicaciones e Investigación

View Publication Info
 
 
Field Value
 
Title Análisis del exoesqueleto para la recuperación del daño en el sistema locomotor a partir de un sensor para la extensión y flexión del brazo
 
Creator Ochoa G, Nancy Edith
Mesa, Carlos Eduardo
 
Subject dinámica; exoesqueleto; electromiografía; prototipos; sensores.
 
Description Se presentará un estado del arte de los exoesqueletos más relevantes a nivel mundial, y a partir de ello, se realizará un análisis del movimiento de la extremidad superior, enfocado en los movimientos del antebrazo y la muñeca, teniendo en cuenta los puntos y ángulos con sus grados de libertad para evaluar en la extensión y la flexión. Se dan a conocer los tipos de movimientos para los músculos distales y proximales, así como la función del ejercicio más adecuada para la recuperación de acuerdo con la señal de electromiografía (EMG) se define la mejor terapia, pasiva o activa, mediante un modelado cinético del movimiento en el tipo de terapia, a partir del modelo matemático JERK a través de las funciones de MATLAB.
 
Publisher Universidad Nacional Abierta y a Distancia, UNAD
 
Contributor
 
Date 2018-01-08
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

 
Format application/pdf
text/html
 
Identifier http://hemeroteca.unad.edu.co/index.php/publicaciones-e-investigacion/article/view/2827
10.22490/25394088.2827
 
Source Magazine specialized in Engineering; Vol. 12, Núm. 1 (2018); 87 - 99
Publicaciones e Investigación; Vol. 12, Núm. 1 (2018); 87 - 99
2539-4088
1900-6608
 
Language spa
 
Relation http://hemeroteca.unad.edu.co/index.php/publicaciones-e-investigacion/article/view/2827/2887
http://hemeroteca.unad.edu.co/index.php/publicaciones-e-investigacion/article/view/2827/3011
/*ref*/Abend, W., Bizzi, E. & Morasso, P. (1982). Human arm trajectory formation. Brain, 105(2), 331–348.
/*ref*/Ball, S. J., Brown, I. E. & Scott, S. H. (2007). MEDARM: A rehabilitation robot with 5DOF at the shoulder complex. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM.
/*ref*/Bütefisch, C., Hummelsheim, H., Denzler, P. & Mauritz, K. H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J. Neurol. Sci., 130,(1), 59–68.
/*ref*/Carignan, C., Tang, J. & Roderick, S. (2009). Development of an exoskeleton haptic interface for virtual task training. IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS. 3697–3702.
/*ref*/Cirstea, M. C. & Levin, M. F. (2007). Improvement of Arm Movement Patterns and Endpoint Control Depends on Type of Feedback During Practice in Stroke Survivors. Neurorehabil. Neural Repair, 21(5), 398–411.
/*ref*/Cromer, A. H. (1996). Física para las ciencias de la vida, Segunda ed. Barcelona: Reverté.
/*ref*/Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T. C. & Burdet, E. (2008a.). HandCARE: A cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans. Neural Syst. Rehabil. Eng., 16(6), 582–591.
/*ref*/Dovat, L., Lambercy, O., Gassert, R., Burdet, E. & Leong, T. C. (2008b). HandCARE2: A novel cable interface for hand rehabilitation. Virtual Rehabil. IWVR.
/*ref*/Fitle, K. D., Pehlivan, A. U. & O’Malley, M. K. (2015). A robotic exoskeleton for rehabilitation and assessment of the upper limb following incomplete spinal cord injury. Proceedings - IEEE International Conference on Robotics and Automation, vol. 2015– June, 4960–4966.
/*ref*/Flash T. & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci., 5(7), 1688–1703.
/*ref*/Garrec, P., Friconneau, J. P., Méasson, Y. & Perrot, Y. (2008). ABLE, an innovative transparent exoskeleton for the upperlimb. IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, 1483–1488.
/*ref*/Garrido, J., Yu, W. & Soria, A. (2014). Design and Modeling of an Upper Limb Exoskeleton. 5th IEEE RAS/EMBS Int. Conf. Biomed. Robot. Biomechatronics, 508–513.
/*ref*/Gijbels, D., Lamers, I., Kerkhofs, L., Alders GKnippenberg, E. & Feys, P. (2011). The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J. Neuroeng. Rehabil., 8(1), 5.
/*ref*/Gopura, R. A. R. C., Kiguchi, K. & Yi, Y. (2009). (2009). SUEFUL- 7: A 7DOF upper-limb exoskeleton robot with musclemodel- oriented EMG-based control. IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 2009, 1126–1131.
/*ref*/Gunasekara, J. M. P., Gopura, R. A. R. C., Jayawardane, T. S. S. & Lalitharathne, S. W. H. M. T. D. (2012). Control methodologies for upper limb exoskeleton robots. IEEE/SICE International Symposium on System Integration, SII 2012, 19–24.
/*ref*/Guo, C. & Morris, S. A. (2017). Engineering cell identity: establishing new gene regulatory and chromatin landscapes, Curr. Opin. Genet. Dev., 46, 50-57.
/*ref*/Hallett, M. (2002). Recent advances in stroke rehabilitation. Neurorehabilitation and Neural Repair, 16(2), 211–217.
/*ref*/Hogan, N. (1984). An organizing principle for a class of voluntary movements. J. Neurosci., 4(11), 2745–2754.
/*ref*/Hwang, C. H., Seong, J. W. & Son, D. S. (2012). Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin. Rehabil., 26(8), 696–704.
/*ref*/Jarrassé, N., Tagliabue, M., Robertson, J. V., Maiza, A., Crocher, V., Roby-Brami, A. & Morel, G. (2010). A methodology to quantify alterations in human upper limb movement during co-manipulation with an exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng., 18(4), 389–397.
/*ref*/Kim, S., Berkley, J. J. & Sato, M. (2003). A Novel Seven Degree of Freedom Haptic Device for Engineering Design. Virtual Real., 6(4), 217–228.
/*ref*/Klein, J., Spencer, S.J., Allington, J., Minakata, K., Wolbrecht, E.T., Smith, R. Bobrow, J. E. & Reinkensmeyer, D. J. (2008).
/*ref*/Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (BONES). 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 19-22 oct., 535–541, Kwakkel, G., Kollen, B. J. & Krebs, H. I. (2008). Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review. Neurorehabil. Neural Repair, 22(2), 111–121.
/*ref*/Loureiro, R., Amirabdollahian, F., Topping, M., Driessen, B. & Harwin, W. (2003). Upper limb robot mediated stroke therapy - GENTLE/s approach. Auton. Robots, 15(1), 35–51.
/*ref*/Loureiro, R. C. V. & Harwin, W. S. (2007). Reach & grasp therapy: Design and control of a 9-DOF robotic neuro-rehabilitation system. 2007 IEEE 10th Int. Conf. Rehabil. Robot. ICORR, 13-15 june, 757–763.
/*ref*/Loureiro R. C. V. & Smith, T. A. (2011). Design of the ROBIN system: Whole-arm multi-model sensorimotor environment for the rehabilitation of brain injuries while sitting or standing. IEEE Int. Conf. Rehabil. Robot.
/*ref*/Mali, U. & Munih, M. (2006). HIFE-haptic interface for finger exercise. IEEE/ASME Trans. Mechatronics, 11(1), 93–102.
/*ref*/McGibbon, C. A., Brandon, S. C. E., Brookshaw, M. & Sexton, A. (2017). Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults,” Knee, 24(5), 977-993.
/*ref*/Miller, L. M., & Rosen, J. (2010). Comparison of multi-sensor admittance control in joint space and task space for a seven degree of freedom upper limb exoskeleton. 3rd IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, BioRob, 70–75.
/*ref*/Nichols-Larsen, D. S., Clark, P. C., Zeringue, A., Greenspan, A. & Blanton, S. (2005). Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke, 36(7), 1480–1484.
/*ref*/Oblak, J., Cikajlo, I. & Matjacic, Z. (2009). A universal haptic device for arm and wrist rehabilitation. Work, 1(3), 436–441.
/*ref*/Orozco, J. L. V. (1999). Enfermedad cerebro vascular. vol. 3, no. 4, pp. 1219–1224,
/*ref*/Park, H. S., Ren, Y. & Zhang, L. Q. (2008). IntelliArm: An exoskeleton for diagnosis and treatment of patients with neurological impairments. Proc. 2nd Bienn. IEEE/RAS-EMBS Int. Conf. Biomed. Robot, 109–114.
/*ref*/Patton, J. L., Kovic, M. & Mussa-Ivaldi, F. (2006). Customdesigned haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J. Rehabil. Res. Dev., 43(5), 643–656.
/*ref*/Prange, G. B., Jannink, M. J. A., Groothuis-Oudshoorn, C. G. M., Hermens, H. J. & Ijzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev., 43(2), p. 171-184.
/*ref*/Rahman, M. H., Saad, M., Kenné, J. P. & Archambault, P. S. (2009). Modeling and control of a 7DOF exoskeleton robot for arm movements. IEEE Int. Conf. Robot. Biomimetics, ROBIO, 245–250.
/*ref*/Reinkensmeyer D. J., Emken, J. L. & Cramer, S. C. (2004). Robotics, Motor Learning, and Neurologic Recovery. Annu. Rev. Biomed. Eng., 6(1), 497–525.
/*ref*/Riener, R., Nef, T. & Colombo, G. (2005). Robot- aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput., 43, 2–10.
/*ref*/Rosen, J. & Perry, J. C. (2007). Upper Limb Powered Exoskeleton. Int. J. Humanoid Robot., 4(3), 529–548.
/*ref*/Ruiz Garate, V., Parri, A., Yan, T., Munih, M., Molino Lova, R., Vitiello, N. & Ronsse, R. (2017). Experimental Validation of Motor Primitive-Based Control for Leg Exoskeletons during Continuous Multi-Locomotion Tasks. Front. Neurorobot., 11, 15.
/*ref*/Spencer, S. J., Klein, J., Minakata, K., Le, V., Bobrow, J. E. & Reinkensmeyer, D. J. (2008). A low cost parallel robot and trajectory optimization method for wrist and forearm rehabilitation using the Wii. Proc. 2nd Bienn. IEEE/RAS-EMBS Int. Conf. Biomed. Robot., 869–874.
/*ref*/Stienen, A., Hekman, E., Van der Helm, F., Prange, G., Jannink, M., Aalsma A. M.M. & Kooij, H. V. d. (2007). Dampace: Dynamic force-coordination trainer for the upper extremities. IEEE 10th Int. Conf. Rehabil. Robot. ICORR’07, 820–826.
/*ref*/Sugar, T. G., He, J., Koeneman, E. J., Koeneman, J. B., Herman, R., Huang, H., Schultz, R.S., Herring, D.E., Wanberg, J., Balasubramanian, S., Swenson, P. & Ward, J. A. (2007). Design and control of RUPERT: A device for robotic upper extremity repetitive therapy. IEEE Trans. Neural Syst. Rehabil. Eng., 15(1), 336–346.
/*ref*/Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R. & Cramer, S. C. (2008). Robot-based hand motor therapy after stroke. Brain, 131(2), 425–437.
/*ref*/Vertechy, R., Frisoli, A., Dettori, A., Solazzi, M. & Bergamasco, M. (2009). Development of a new exoskeleton for upper limb rehabilitation. IEEE Int. Conf. Rehabil. Robot., 188–193.
/*ref*/Viladot Voegeli, A. (2001). Lecciones básicas de biomecánica del aparato locomotor. Barcelona: Springer-Verlag.
/*ref*/Waldron, K. J. & Kinzel, G. L. (2004). Kinematics, dynamics, and design of machinery. New Jersey: Wiley-Balckwell.
/*ref*/Warlow, C. P., Gijn, J. v., Dennis, M. S., Wardlaw, J. M., Bamford, J. M., Hankey, G. J., Sandercock, P. A. G., Rinkel, G., Langhorne, P., Sudlow, C., Rothwell, P. (2007). Stroke : Practical Management. New Jersey: Wiley-Blackwell.
/*ref*/Wisneski, K. J. & Johnson, M. J. (2007). Trajectory planning for functional wrist movements in an ADL-oriented, robot-assisted therapy environment. Proc. - IEEE Int. Conf. Robot. Autom., April, 3365–3370.
 
Rights Copyright (c) 2018 Publicaciones e Investigación
http://creativecommons.org/licenses/by-nc-sa/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library