Spontaneous ventilation in invasive mechanical ventilation

Movimiento Cientifico

View Publication Info
Field Value
Title Spontaneous ventilation in invasive mechanical ventilation
Ventilación espontánea en ventilación mecánica invasiva
Creator Bravo Díaz, Andrés Gonzalo
Libreros Arciniegas, Marcela
Description Introduction: The use of invasive mechanical ventilation (IMV) conventionally with controlled modes and the use of sedatives leads to an increase in complications and unwanted events such as diaphragmatic dysfunction by  inhibiting spontaneous ventilation during IMV. This article will review spontaneous ventilation feasibility based on inspiratory muscle activity as a physiological mechanism for pulmonary ventilation; changes to be replaced by a mechanism where ventilation is generated by IMV; the interaction between the two mechanism “dual lung” and its effects at the pulmonary level. The available evidence is found in SDRA with advantages and disadvantages. It is proposed evaluation strategies, monitoring, impulse regulation and inspiratory effort that ease spontaneous ventilation during IMV. Method: a documental review was realize in four phases: 1. Information search, 2.  Publications selection, 3. Processing and analysis of the selected information, 4. Writing of the document. Conclusion: Spontaneous ventilation in IMV is viable by reducing the incidence of inspiratory muscle weakness and could reduce UIC stay. In studies in SDRA “dual lung” presents more advantages than disadvantages in light or moderate SDRA. Studies are needed in less complex clinical situations and more common in UIC or healthy lungs where more advantages could be found. It is suggested to evaluate the clinical and pathophysiological moment, monitor the IMV, monitor and regulate the respiratory drive and muscular effort focusing on the principles of   pulmonary and diaphragmatic protection.
Introducción: El uso de la ventilación mecánica invasiva (VMI) convencionalmente con modos controlados y uso de sedantes conlleva a un aumento de complicaciones y eventos indeseados como la disfunción diafragmática al inhibir la ventilación espontanea. Este artículo revisara la viabilidad de la ventilación espontanea en VMI partiendo de la actividad muscular inspiratoria como mecanismo fisiológico para la ventilación pulmonar, los cambios al ser remplazado por un mecanismo donde la ventilación es generada por la VMI, la interacción entre los dos mecanismos “pulmón dual” y sus efectos a nivel pulmonar. La evidencia disponible se encuentra en SDRA con ventajas y desventajas, se propone estrategias de evaluación, monitoria, regulación del impulso y esfuerzo inspiratorio que facilite la ventilación espontanea durante la VMI. Método: Se realizó una revisión documental en 4 fases: 1. Búsqueda de información, 2. Selección de publicaciones, 3. Procesamiento y análisis de la información seleccionada, 4. Redacción del documento. Conclusión: La ventilación espontánea en VMI es viable al reducir la incidencia de la debilidad muscular y podría disminuir la estancia en UCI. En estudios en SDRA el “pulmón dual” presenta más ventajas que desventajas y se reconoce su utilidad en SDRA leve o moderado. Hacen falta estudios en situaciones clínicas menos complejas y más comunes en UCI o pulmones sanos donde podría encontrarse más ventajas. Se sugiere realizar la evaluación del momento clínico y fisiopatológico, monitorear la VMI, monitorear y regular el impulso respiratorio y el esfuerzo muscular enfocándose en los principios de protección pulmonar y diafragmática.  
Publisher Corporación Universitaria Iberoamericana
Date 2019-06-14
Type info:eu-repo/semantics/article
Format application/pdf
Identifier https://revmovimientocientifico.ibero.edu.co/article/view/mct.13105
Source Movimiento Científico; Vol 13 No 1 (2019); 41-52
Movimiento Científico; Vol. 13 Núm. 1 (2019); 41-52
Language spa
Relation /*ref*/Dvorkin, M., Cardinali , D., & Iermoli, R. (2010). Bases fisiológicas de la práctica médica. Panamericana.
/*ref*/Akoumianaki E, Maggiore SM, , Valenza F, Bellani G, Jubran A, & Lorin. (2014). The application of esophageal pressure measurement in patients with respiratory failure. American journal of respiratory and critical care medicine, 189(5), 520-531.
/*ref*/Altemeier WA, McKinney S, & Glenny RW. (2000). Fractal nature of regional ventilation distribution. Journal of Applied Physiology, 88(5), 1551-1557.
/*ref*/Altemeier WA, Robertson HT, & Glenny RW. (1998). Pulmonary gas exchange analysis by using simultaneous deposition of aerosolized and injected microspheres. Journal of Applied Physiology, 85(6), 2344-2351.
/*ref*/Anzueto A, Peters JI, Tobin MJ, Martin J., De Los Santos, R., Seidenfeld, j., . . . Coalson, J. (1997). Effects of prolonged controlled mechanical ventilation on diaphragmatic function in healthy adult baboons. Critical Care Medicine, 25(7), 1187-1190.
/*ref*/Baedorf Kassis E1, Loring SH2, & Talmor D. (2016). Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive care medicine, 42(8), 1206-1213.
/*ref*/Bellani , G., Grasselli , G., Teggia, M., Mauri , T., Coppado, A., Brochard , L., & Pesenti , A. (2016). ¿Do spontaneous and mechanical breathing have similar effects on average transpulmonary and alveolar pressure? Critical Care, 20(1), 142.
/*ref*/Bernard , N., Matecki , S., Py , G., López , S., Mercier , J., & Capdevila , X. (2003). Effects of prolonged mechanical ventilation on respiratory muscle ultrastructure and mitochondrial respiration in rabbits. Intensive Care Med, 29, 111-118.
/*ref*/Boles, J.-M., Bion, J., Connors, A., Herridge, M., Marsh, B., Melot, C., . . . Welte, T. (2007). Weaning from mechanical ventilation. European Respiratory Journal, 29, 1033-1056.
/*ref*/Carney , D., DiRocco, J., & Nieman, G. (2005). Dynamic alveolar mechanics and ventilator-induced lung injury. Critical care medicine, 33(3), S122-S128.
/*ref*/Chanques, G., Kress, J. P., Pohlman, A., Patel, S., Poston, J., Jaber, S., & Hall, J. (2013). Impact of ventilator adjustment and sedation–analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Critical care medicine, 41(9), 2177-2187.
/*ref*/Chastre, J., & Fagon, J. (2002). Ventilator-associated pneumonia. American journal of respiratory and critical care medicine, 165(7), 867-903.
/*ref*/Chiumello , D., Carlesso , E., Brioni , M., & Cressoni, M. (2016). Airway driving pressure and lung stress in ARDS patients. Crit Care, 20, 276.
/*ref*/Chu, E., Whitehead , T., & Slutsky, A. (2004). Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Critical care medicine, 32(1), 168-174.
/*ref*/Clark, F., & Von Euler, C. (1972). On the regulation of depth and rate of breathing. The Journal of Physiology, 222(2), 267-295.
/*ref*/Davis, R., Bruells, C., Stabley, J., McCullough, D., Powers, S., & Behnke, B. (2012). Mechanical ventilation reduces rat diaphragm blood flow and impairs O2 delivery and uptake. Critical care medicine, 40(10), 2858.
/*ref*/Doorduin , J., Sinderby, C., Beck, J., Van der Hoeven, J., & Heunks, L. (2015). Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient–Ventilator Interaction critical care medicine. Anesthesiology: The Journal of the American Society of Anesthesiologists, 123(1), 181-190.
/*ref*/Ebihara, S., Hussain, S., Danialou, G., Cho, W., Gottfried, S., & Petrof, B. (2002). Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. American Journal of Respiratory and Critical Care Medicine, 165(2), 221-228.
/*ref*/Futier , E., Constantin, J.-M., & Paugam-Burtz , C. (2013). A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. New England Journal of Medicine, 369(5), 428-437.
/*ref*/Futier, E., Constantin, J., Combaret, L., Mosoni, L., Roszyk, L., Sapin, V., . . . Bazin, J. (2008). Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Critical Care, 12(5), R116.
/*ref*/Gama de Abreu, M., Güldner, A., & Pelosi, P. (2012). Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome. INTENSIVE CARE AND RESUSCITATION, 25(2), 148–155.
/*ref*/Gayan-Ramirez , G., de Paepe , K., Cadot , P., & Decramer, M. (2003). Detrimental effects of short-term mechanical ventilation on diaphragm function and IGF-I mRNA in rats. Intensive care medicine, 29(5), 825-833.
/*ref*/Gayan-Ramírez , G., Testelmans, D., Maes , K., Racz, G., Cadot, P., & Zador , E. (2005). Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects. Critical care medicine, 33(12), 2804-2809.
/*ref*/Georgopoulos, D., Xirouchaki, N., Tzanakis, I., & Younes, M. (2016). Driving pressure during assisted mechanical ventilationIs it controlled by patient brain? Respiratory Physiology & Neurobiology, 228, 69–75.
/*ref*/Glenny , R., & Robertson , H. (1990). Fractal properties of pulmonary flow: characterization of spatial heterogeneity. Journal of Applied Physiology, 69(2), 532-545.
/*ref*/Goligher, E., Fan, E., Herridge, M., Murray, S., Vorona, S., Brace, D., & et al. (2015). Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. American journal of respiratory and critical care medicine, 192, 1080 - 1088.
/*ref*/Grasso, F., Engelberts, D., Helm, E., Frndova, S., Jarvis, S., Talakoub , O., & et al. (2008). Negative-pressure ventilation: better oxygenation and less lung injury. American journal of respiratory and critical care medicine, 177(4), 412-418.
/*ref*/Guldner, A., Braune, A., Carvalho, N., Beda, A., Zeidler, S., Wiedemann, B., . . . Gama, A. (2014). Higher Levels of Spontaneous Breathing Induce Lung Recruitment and Reduce Global Stress/Strain in Experimental Lung Injury. Anesthesiology: The Journal of the American Society of Anesthesiologists, 120(3), 673-682.
/*ref*/Guldner, N., Pelosi, P., & Gama de Abreu, M. (2014). Spontaneous breathing in mild and moderate versus severe acute respiratory distress síndrome. Current opinion in critical care, 20(1), 69-76.
/*ref*/Guyton, A., & Hall, J. (1996). Tratado de fisiología medica (9 ed.). Madrid: Interamericana – McGraw – Hill.
/*ref*/Hakim, T., Lisbona, R., & Dean, G. (1987). Gravity-independent inequality blood flow in humans. Journal of Applied Physiology, 63(3), 1114-1121.
/*ref*/Hakim, T., Lisbona, R., Michel, R., & Dean, G. (1993). Role of vasoconstriction in gravity- no dependent central-perpheral gradient in pulmonary blood flow. Journal of Applied Physiology, 74(2), 897-904.
/*ref*/Hedenstierna, G., & Edmark, L. (2012). The effects of anesthesia and muscle paralysis on the respiratory system. Applied Physiology in Intensive Care Medicine 1, 299-307.
/*ref*/Hermans, G., Agten, A., Testelmans, D., Decramer, M., & Gayan-Ramírez, G. (2010). Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Critical Care, 14, R127.
/*ref*/Hooijman, P., Beishuizen, A., Witt, C., de Waard, M., Girbes, A., Spoelstra-de Man, A., & et al. (2015). Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. American journal of respiratory and critical care medicine,, 191(10), 1126-1138.
/*ref*/Hooijman, P., Paul, M., Stienen, B., Beishuizen, A., Van Hees, H., Singhal, S., & et al. (2014). Unaffected contractility of diaphragm muscle fibers in humans on mechanical ventilation. American Journal of Physiology-Heart and Circulatory Physiology, 307(6), L460-L470.
/*ref*/Hudson, M., Smuder, A., Nelson, W., Bruells, C., Levine, S., & Powers, S. (2014). Both High Level Pressure Support Ventilation and Controlled Mechanical Ventilation Induce Diaphragm Dysfunction and Atrophy. Critical care medicine, 40(4), 1254.
/*ref*/Jaber, S., Petrof, B., Jung, B., Chanques, G., Berthet, J.-P., & Rabuel, C. (2011). Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. American journal of respiratory and critical care medicine, 183(3), 364-371.
/*ref*/Jung, B., Constantin, J., Rossel, N., Le Goff, C., Sebbane, M., & Coisel, Y. (2010). Adaptive support ventilation prevents ventilator-induced diaphragmatic dysfunction in piglet: an in vivo and in vitro study. Anesthesiology: The Journal of the American Society of Anesthesiologists, 112(6), 1435-1443.
/*ref*/Kaplan, L., Bailey, H., & Formosa, V. (2001). Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Critical Care, 5(4), 221.
/*ref*/Keenan, J., Formenti, P., & Marini, J. (2014). Lung recruitment in acute respiratory distress syndrome: ¿what is the best strategy? Current opinion in critical care, 20(1), 63-68.
/*ref*/Langer, T., Vecchi, V., Belenkiy, S., & et al. (2014). Extracorporeal gas exchange and spontaneous breathing for the treatment of acute respiratory distress syndrome: an alternative to mechanical ventilation. Critical care medicine, 42(3), e211-e220.
/*ref*/Le Bourdelles, G., Viires, N., Boczkowski, J., Seta, N., Pavlovic, D., & Aubier, M. (1994). Effects of mechanical ventilation on diaphragmatic contractile properties in rats. American journal of respiratory and critical care medicine, 149(6), 1539-1544.
/*ref*/Levine, S., Friscia, M., Kaiser, L., & Shrager, J. (2006). Ventilator-Induced atrophy in human diaphragm myofibers. In Proc Am Thorac Soc, 3, A27.
/*ref*/Levine, S., Nguyen, T., & Taylor, N. (2008). Rapid Disuse Atrophy of Diaphragm Fibers in Mechanically Ventilated Humans. New England Journal of Medicine, 358(13), 1327-1335.
/*ref*/Lisbona , R., Dean , G., & Hakim, T. (1978). Observations with SPECT on the normal regional distribution of pulmonary blood flow in gravity independent planes. J Nucl Med, 28, 1758-1762.
/*ref*/Mandelbrot, B. (1997). La geometría fractal de la naturaleza. BARCELONA: Tusquets.
/*ref*/Matamis, D., Soilemezi, E., Tsagourias, M., Akoumianaki, E., Dimassi, S., Boroli, F., . . . Brochard, L. (2013). Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Medicine, 39, 801–810.
/*ref*/Mauri, T., Yoshida , T., Bellani, G., & et al. (2016). Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive care medicine, 42(9), 1360-1373.
/*ref*/Michels, D., & West, J. (1978). Distribution of pulmonary ventilation and perfusión during short periods of weightlessness. Journal of Applied Physiology, 45(6), 987-998.
/*ref*/Neumann, P., Wrigge, H., Zinserling, J., Hinz, J., Maripuu, E., Andersson, L., . . . Hedenstierna, G. (2005). Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Critical care medicine, 33(5), 1090-1095.
/*ref*/Papazian, L., Forel, J., Gacouin, A., Penot‐Ragon, C., Perrin, G., Loundou, A., & et al. (2010). Neuromuscular blockers and ARDS: Thou shalt not breathe, move, or die! N Engl J, 363(12), 1107-1116.
/*ref*/Pellegrini, M., Hedenstierna, G., Roneus, A., & et al. (2017). The Diaphragm Acts as a Brake During Expiration to Prevent Lung Collapse. American journal of respiratory and critical care medicine, 195(12), 1608-1616.
/*ref*/Petrof, B., Jaber, S., & Matecki, S. (2004). Ventilator-induced diaphragmatic dysfunction. American journal of respiratory and critical care medicine, 169(3), 336-341.
/*ref*/Poole, D., Sexton, W., Farkas, G., Powers, S., & Reid, M. (1997). Diaphragm structure and function in health and disease. Medicine and science in sports and exercise, 29(6), 738-754.
/*ref*/Prange, H. (2003). Laplace´s law and the alveolus: a misconception of anatomy and a misapplication of physics. Advances in physiology education, 27(1), 34-40.
/*ref*/Putensen, C., Mutz , N., Putensen-Himmer, G., & Zinserling, J. (1999). Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. American journal of respiratory and critical care medicine, 159(4), 1241-1248.
/*ref*/Putensen, C., Muders , T., Varelmann, D., & Wrigge, H. (2006). The impact of spontaneous breathing during mechanical ventilation. Current opinion in critical care, 12(1), 13-18.
/*ref*/Putensen, C., Zech, S., Wrigge, H., Zinserling, J., Stuber, F., Von Spiegel, T., & et al. (2001). Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. American journal of respiratory and critical care medicine, 161(1), 43-49.
/*ref*/Richard, J., Lyazidi, A., Akoumianaki, E., & et al. (2013). Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive care medicine, 39(11), 2003-2010.
/*ref*/Saddy, F., Oliveira, G., Garcia, C., & et al. (2010). Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury. Intensive care medicine, 36(8), 1417-1426.
/*ref*/Sassoon, C., Caoizzo, V., Manka, A., & Sieck, G. (2002). Altered diaphragm contractile properties with controlled mechanical ventilation. Journal of applied physiology, 92(6), 2585-2595.
/*ref*/Sassoon, C., Zhu, E., & Caiozzo, V. (2004). Assist‐control mechanical ventilation attenuates ventilator‐induced diaphragmatic dysfunction. American journal of respiratory and critical care medicine, 170(6), 626-632.
/*ref*/Schepens, T., Verbrugghe, W., Dams, K., Corthouts, B., Parizel, P., & Jorens, P. (2015). The course of diaphragm atrophy in ventilated patients assessed with ultrasound: a longitudinal cohort study. Critical care, 19(1), 422.
/*ref*/Serpa Neto, A., Cardoso, S., Manetta, J., & et al. (2012). Association between use of lungprotective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA, 1651-1659.
/*ref*/Shanely, R., Zergeroglu, M., Lennon, S., Sugiura, T., Yimlamai, T., Enns, D., . . . Powers, S. (2002). Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. American journal of respiratory and critical care medicine, 166(10), 1369-1374.
/*ref*/Sinclair, S., Chi, E., Lin, H., & Altemeier, W. (2009). Positive end-expiratory pressure alters the severity and spatial heterogeneity of ventilator-induced lung injury: an argument for cyclical airway collapse. Journal of critical care, 24(2), 206-211.
/*ref*/Sinderby, C., Navalesi, P., Beck, J., & et al. (1999). Neural control of mechanical ventilation in respiratory failure. Nature medicine, 5(12), 1433.
/*ref*/Slutsky, A. (2005). Ventilator-induced lung injury: from barotrauma to biotrauma. Respiratory care, 50, 646-59.
/*ref*/Slutsky, A., & Ranieri, V. (2013). Ventilator-induced lung injury. New England Journal of Medicine, 369(22), 2126-2136.
/*ref*/Spieth, P., Carvalho, A., Guldner, A., Kasper, M., Schubert, R., Carvalho, N., . . . Gama De Abreu, M. (2011). Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Critical care medicine, 39(4), 746-755.
/*ref*/Valenzuela, J., Pinochet, R., Escobar, M., Marquez, J., Riquelme, R., & Cruces, P. (2014). Disfunción diafragmática inducida por ventilación mecánica. Revista chilena de pediatría, 85(4), 491-498.
/*ref*/Van den Berg, M., Hooijman, P., Beishuizen, A., de Waard, M., Paul, M., Hartemink, K., . . . Ottenheijm, C. (2017). Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill. American journal of respiratory and critical care medicine, 196(12), 1544-1558.
/*ref*/Van Hees, H., Schellekens, W., Andrade Acuna, G., Linkels, M., Hafmans, T., Ottenheijm, C., & et al. (2012). Titin and diaphragm dysfunction in mechanically ventilated rats. Intensive Care Med, 38, 702 - 709.
/*ref*/Vaporidi, K., Xirouchaki, N., & Georgopoulos, D. (2016). Driving pressure during assisted mechanical ventilation: is it controlled by patient brain? Respiratory physiology & neurobiology, 228, 69-75.
/*ref*/Vassilakopoulos, T. (2013). Ventilator‐induced diaphragmatic dysfunction. En M. Tobin, Principles and Practice of Mechanical Ventilation (3 ed.). New York: McGraw Hill.
/*ref*/Vassilakopoulos, T., & Petrof, B. (2004). Ventilator-induced diaphragmatic dysfunction. American journal of respiratory and critical care medicine, 169(3), 336-341.
/*ref*/Vassilakopoulus, T., Zakynthinos, S., & Roussos , C. (2005). Bench-to-bedside review: ¿Weaning failure-should we rest the respiratory muscles with controlled mechanical ventilation? Critical Care, 10(1), 204.
/*ref*/West, J. (1962). Regional differences in gas Exchange in the lung of erect man. Journal of Applied Physiology, 17, 693-995.
/*ref*/West, J. (1979). Ventilación/ Perfusión Alveolar e intercambio gaseoso. Buenos Aires: Editorial Médica Panamericana.
/*ref*/West, J. (2005). Fisiología respiratoria. Buenos Aires: Editorial Médica Panamericana.
/*ref*/West, J. (2012). Respiratory physiology: The essentials (9 ed.). Lippincott Williams & Wilkins.
/*ref*/Wrigge, H., Zinserling, J., Neumann, P., & et al. (2005). Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Critical care, 9(6), R780.
/*ref*/Wrigge, H., Zinserling, J., Neumann, P., Defosse, J., Magnusson, A., Putensen, C., & Hedenstierna, G. (2003). Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology: The Journal of the American Society of Anesthesiologists, 99(2), 376-384.
/*ref*/Xia , J., Zhang , H., Sun , B., Yang , R., He , H., & Zhan , Q. (2014). Spontaneous breathing with biphasic positive airway pressure attenuates lung injury in hydrochloric acid–induced acute respiratory distress syndrome. Anesthesiology: The Journal of the American Society of Anesthesiologists, 120(6), 1441-1449.
/*ref*/Xia, J., Sun, B., He , H., Zhang , H., Wang , C., & Zhan, Q. (2011). Effect of spontaneous breathing on ventilator-induced lung injury in mechanically ventilated healthy rabbits: a randomized, controlled, experimental study. Critical Care, 15(5), R244.
/*ref*/Yang, L., Luo, J., Bourdon, J., Lin, M., Gottfried, S., & Petrof, B. (2002). Controlled mechanical ventilation leads to remodeling of the rat diaphragm. American Journal of Respiratory and Critical Care Medicine, 166(8), 1135-1140.
/*ref*/Yoshida, T., Roldan, R., Beraldo, M., Torsani, V., Gomes, S., De Santis, R., . . . Amato, M. (2016). Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure. Critical Care Medicine, 44(8), 678 – 688.
/*ref*/Yoshida, T., Nakahashi, S., Nakamura, M., Koyama, Y., Roldan, R., Torsani, V., . . . Fujino, Y. (2017). Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort. American journal of respiratory and critical care medicine, 196(5), 590-601.
/*ref*/Yoshida, T., Torsani, V., Gomes, S., & et al. (2013). Spontaneous effort causes occult pendelluft during mechanical ventilation. American journal of respiratory and critical care medicine, 188, 1420–1427.
/*ref*/Yoshida, T., Uchiyama, A., & Fujino, Y. (2015). The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. Journal of intensive care, 31(1), 18.
/*ref*/Yoshida, T., Uchiyama, A., Matsuura, N., & et al. (2012). Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Critical care medicine, 40(5), 1578-1585.
/*ref*/Yoshida, T., Uchiyama, A., Matsuura, N., & et al. (2013). The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Critical care medicine, 41(2), 536-545.
/*ref*/Zambon, M., Greco, M., Bocchino, S., Cabrini, L., Beccaria, P., & Zangrillo, A. (2017). Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive care medicine, 43(1), 29-38.
Rights https://creativecommons.org/licenses/by-nc-nd/4.0/

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us


Copyright © 2015-2018 Simon Fraser University Library