Conteúdo volumétrico da água no solo via modelos de competição interespecífica

Pesquisa e Ensino em Ciências Exatas e da Natureza

View Publication Info
 
 
Field Value
 
Title Conteúdo volumétrico da água no solo via modelos de competição interespecífica
 
Creator dos Santos, Wilian Jeronimo
de Oliveira, Rosane Ferreira
Ceddia, Marcos Bacis
de Almeida, Juliana Lima
 
Description O objetivo do presente trabalho é obter uma ferramenta que possa contribuir para a predição da umidade no solo, considerando um solo heterogêneo e bem drenado, para um determinado período de tempo. No balanço hídrico, como critério de redistribuição da água no solo é feita uma analogia com o modelo de competição em dinâmica de populações. Esta analogia pode ser explicada observando o movimento da água no solo a partir de uma “competição” pela água entre os diferentes compartimentos do solo. Esta competição pela água ocorre na prática pela diferença de potencial hidráulico em cada profundidade de um perfil de solo. Dessa forma, a modelagem proposta é baseada nos modelos de competição interespecífica. Além disso, a metodologia apresentada se caracteriza por possuir uma solução numérica mais estável e mais eficiente do que a tradicional e altamente não-linear equação de Richards. Resultados numéricos foram comparados a partir de resultados obtidos pelo programa Hydrus-1D.Palavras chave: Modelagem matemática, equação de Richards, simulação numérica, recursos hídricos.
 
Publisher Unidade Acadêmica de Ciências Exatas e da Natureza/CFP/UFCG
 
Contributor
 
Date 2018-11-26
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

 
Format application/pdf
 
Identifier http://revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1038
10.29215/pecen.v2i2.1038
 
Source Pesquisa e Ensino em Ciências Exatas e da Natureza; v. 2 (2018): Pesquisa e Ensino em Ciências Exatas e da Natureza
2526-8236
10.29215/pecen.v2i2
 
Language por
 
Relation http://revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1038/432
/*ref*/Bornhöft D. (1994) A simulation model for the description of the one-dimensional vertical soil water flow in the unsaturated zone. Ecological Modelling, 75/76: 269-278. Doi: 10.1016/0304-3800(94)90024-8 Burden R.L. & Faires J.D. (2011) Numerical Analysis. Brooks/Cole: MA. 872 p. Caviedes-Voullieme D., Garcia-Navarro P. & Murillo J. (2013) Verification, conservation, stability and efficiency of a finite volume method for the 1D Richards equation. Journal of Hydrology, 480: 69–84. Doi: 10.1016/j.jhydrol.2012.12.008 Celia M.A., Bouloutas E.T. & Zarba R.L. (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resources Research, 26(7): 1483–1496. Doi: 10.1029/WR026i007p01483 Dardanelli J.L., Ritchie J.T., Calmon M., Andriani J.M. & Collino D.J. (2004) An empirical model for root water uptake. Field Crops Research, 87: 59-71. Doi: 10.1016/j.fcr.2003.09.008 Edelstein-Keshet L. (2005) Mathematical Models in Biology. SIAM Classics in Applied Mathematics. 586 p. Eymard R., Gutnic M. & Hilhorst D. (1999) The finite volume method for Richards equation. Computational Geosciences, 3(3–4): 259–294. Doi: 10.1023/A:1011547513583 Forsyth P.A., Wu Y.S. & Pruess K. (1995) Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media. Advances in Water Resources, 18(1): 25–38. Doi: 10.1016/0309-1708(95)00020-J Lai W. & Ogden F.L. (2015) A mass-conservative finite volume predictor–corrector solution of the 1D Richards’ equation. Journal of Hydrology, 523: 119–127. Doi: 10.1016/j.jhydrol.2015.01. 053 Murray J.D. (2002) Mathematical Biology - An Introduction. 3° edition. Springer-Verlag: New York. 553 p. Reichardt K. & Timm L.C. (2004) Solo, planta atmosfera: conceitos, processos e aplicações. Barueri, SP: Manole. 478 p. Richards L.A. (1931) Capillary conduction of liquids through porous mediums. Physics, 1(5): 318–333. Doi: 10.1063/1.1745010 Simunek J., Sejna M., Saito H., Sakai M. & van Genuchten M.T. (2009) The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-saturated Media. Department of Environmental Sciences, University of California Riverside, Riverside, CA. Simunek J., Sejna M. & Van Genuchten M.T. (1999) HYDRUS-2D: simulating water flow and solute transport in two-dimensional variably saturated media, Technical Report, IGWMC, Golden, CO, USA. Takeuchi J., Kawachi T., Imagawa C., Buma N., Unami K. & Maeda S. (2010) A physically based fvm watershed model fully coupling surface and subsurface water flows. Paddy Water Environment, 8: 145–156. Doi: 10.1007/s10333-009-0193-7 Vale I.G., Delgado A.R.S. & Ventura S.D. (2016) Sistemas de viabilidade agrícola sustentáveis. Irriga, 21(2): 342-351. Doi: 10.15809/irriga.2016v21n2p342-351 Van Genuchten M.Th (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898. doi: 10.2136/sssaj1980. 03615995004400050002x Zadeh K.S. (2011) A mass-conservative switching algorithm for modeling fluid flow in variably saturated porous media. Journal of Computational Physics, 230(3): 664–679. Doi: 10.1016/j.jc p.2010.10.011 Zadeh K.S., Shirmohammadi A., Montas H.J. & Felton G. (2007) Evaluation of infiltration models in contaminated landscape. Journal of Environmental Science and Health Part A, 42(7): 983–988. Doi: 10.1080/10934520701373000 Zambra C.E., Dumbser M., Toro E.F. & Moraga N.O. (2012) A novel numerical method of high-order accuracy for flow in unsaturated porous media. International Journal for Numerical Methods Engineering, 89: 227–240. Doi: 10.1002/nme.3241
 
Rights Direitos autorais 2018 Autor e Revista mantêm os direitos da publicação
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library