Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit

Jurnal Informatika

View Publication Info
 
 
Field Value
 
Title Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit
 
Creator Syukron, Akhmad
Subekti, Agus
 
Subject Manajemen Informatika;Sistem Informasi; Data Mining
Penilaian Kredit, Random Forest, Klasifikasi, ketidakseimbangan kelas, Random Over-Under Sampling
 
Description                                          AbstrakPenilaian kredit telah menjadi salah satu cara utama bagi sebuah lembaga keuangan untuk menilai resiko kredit,  meningkatkan arus kas, mengurangi kemungkinan resiko dan membuat keputusan manajerial. Salah satu permasalahan yang dihadapai pada penilaian kredit yaitu adanya ketidakseimbangan distribusi dataset. Metode untuk mengatasi ketidakseimbangan kelas yaitu dengan metode resampling, seperti menggunakan Oversampling, undersampling dan hibrida yaitu dengan menggabungkan kedua pendekatan sampling. Metode yang diusulkan pada penelitian ini adalah penerapan metode Random Over-Under Sampling Random Forest untuk meningkatkan kinerja akurasi klasifikasi penilaian kredit pada dataset German Credit.  Hasil pengujian menunjukan bahwa klasifikasi tanpa melalui proses resampling menghasilkan kinerja akurasi rata-rata 70 % pada semua classifier. Metode Random Forest memiliki nilai akurasi yang lebih baik dibandingkan dengan beberapa metode lainnya dengan nilai akurasi sebesar 0,76 atau 76%. Sedangkan klasifikasi dengan penerapan metode Random Over-under sampling Random Forest  dapat meningkatkan kinerja akurasi sebesar 14,1% dengan nilai akurasi sebesar 0,901 atau 90,1 %. Hasil penelitian menunjukan bahwa penerapan  resampling dengan metode Random Over-Under Sampling pada algoritma Random Forest dapat meningkatkan kinerja akurasi secara efektif pada klasifikasi  tidak seimbang untuk penilaian kredit pada dataset German Credit. Kata kunci: Penilaian Kredit, Random Forest, Klasifikasi, ketidakseimbangan kelas, Random Over-Under Sampling                                                  AbstractCredit scoring has become one of the main ways for a financial institution to assess credit risk, improve cash flow, reduce the possibility of risk and make managerial decisions. One of the problems faced by credit scoring is the imbalance in the distribution of datasets. The method to overcome class imbalances is the resampling method, such as using Oversampling, undersampling and hybrids by combining both sampling approaches. The method proposed in this study is the application of the Random Over-Under Sampling Random Forest method to improve the accuracy of the credit scoring classification performance on German Credit dataset. The test results show that the classification without going through the resampling process results in an average accuracy performance of 70% for all classifiers. The Random Forest method has a better accuracy value compared to some other methods with an accuracy value of 0.76 or 76%. While classification by applying the Random Over-under sampling + Random Forest method can improve accuracy performance 14.1% with an accuracy value of 0.901 or 90.1%. The results showed that the application of resampling using Random Over-Under Sampling method in the Random Forest algorithm can improve accuracy performance effectively on an unbalanced classification for credit scoring on German Credit dataset. Keywords: Imbalance Class, Credit Scoring, Random Forest, Classification, Resampling
 
Publisher LPPM Universitas BSI
 
Contributor
 
Date 2018-09-29
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion


Eksperimen
 
Format application/pdf
 
Identifier http://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/4158
10.31311/ji.v5i2.4158
 
Source Jurnal Informatika; Vol 5, No 2 (2018): Jurnal INFORMATIKA; 175-185
Jurnal Informatika; Vol 5, No 2 (2018): Jurnal INFORMATIKA; 175-185
2528-2247
2355-6579
 
Language ind
 
Relation http://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/4158/pdf
 
Coverage


 
Rights ##submission.copyrightStatement##
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library