Klasifikasi Tanaman Obat Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan Jaringan Syaraf Tiruan

Jurnal Informatika

View Publication Info
 
 
Field Value
 
Title Klasifikasi Tanaman Obat Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan Jaringan Syaraf Tiruan
 
Creator Saputra S, Kana
Perangin-Angin, Mochammad Iswan
 
Subject Machine Learning, Pattern Recognition
Ekstraksi Fitur, Jaringan Syaraf Tiruan Backpropagation, Morfologi Daun, Tanaman Obat
 
Description Abstrak Indonesia telah lama mengenal dan menggunakan tanaman yang berkhasiat sebagai obat. Dari banyaknya tanaman obat yang ada di dunia, 80% tanaman obat tumbuh di hutan tropika yang berada di Indonesia. Sekitar 28.000 spesies tanaman tumbuh dan 1.000 spesies diantaranya telah digunakan sebagai  tanaman obat. Dengan banyaknya spesies tanaman obat dan tingkat kemiripan yang tinggi dapat menyebabkan kesalahan dalam proses identifikasi jenis tanaman obat. Sehingga dibutuhkan bantuan komputer untuk mengenali jenis tanaman obat tersebut. Tujuan dari penelitian ini adalah untuk mengidentifikasi jenis tanaman obat menggunakan jaringan syaraf tiruan backpropagation berdasarkan ekstraksi fitur morfologi daun. Hasilnya menujukkan bahwa perubahan nilai learning rate mempengaruhi hasil identifikasi jenis tanaman obat berdasarkan fitur morfologi daun. Hasil perhitungan rata-rata nilai recognition rate sebesar 90% untuk data training dan 75,56% untuk data testing terjadi saat learning rate 0,01. Nilai learning rate terbaik untuk identifikasi jenis tanaman obat adalah 0,01 dengan jumlah rata-rata epoch sebesar 11,67 dan MSE sebesar 0,13. Ini menunjukkan bahwa metode ekstraksi fitur morfologi daun dan algoritma jaringan syaraf tiruan backpropagation sangat baik digunakan untuk mengidentifkasi jenis tanaman obat. Kata Kunci: Ekstraksi Fitur, Jaringan Syaraf Tiruan Backpropagation, Morfologi Daun, Tanaman Obat Abstract Indonesia has known and used a nutritious plant as a medicine. most of the medicinal plants in the world that is 80% of medicinal plants grown in tropical forests in Indonesia. the plant grows about 28,000 species and 1,000 species of which have been used as medicinal plants. Many species of medicinal plants with a high degree of similarity can cause errors in the process of identifying medicinal plants. Because the problem was needed computer assistance to recognize the types of medicinal plants. This research proposed to identify species of medicinal plants using backpropagation artificial neural network based on leaf morphological feature extraction. The results showed that changes in the value of learning rate influence the identification of medicinal plant species based on leaf morphology features. The calculation average of recognition rate is 90% for training data and 75.56% for data testing occurs at learning rate 0.01. The best learning rate for plant species identification is 0.01 with epoch average is 11.67 and MSE is 0.13. The results of this research concluded that the leaf morphology feature extraction method and backpropagation artificial neural network algorithm are very well used to identify the types of medicinal plants. Keywords: Backpropagation Artificial Neural Network, Feature Extraction, Leaf Morphology, Medicinal Plant
 
Publisher LPPM Universitas BSI
 
Contributor Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia dan Universitas Pembangunan Panca Budi
 
Date 2018-09-29
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion



 
Format application/pdf
 
Identifier http://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/3770
10.31311/ji.v5i2.3770
 
Source Jurnal Informatika; Vol 5, No 2 (2018): Jurnal INFORMATIKA; 169-174
Jurnal Informatika; Vol 5, No 2 (2018): Jurnal INFORMATIKA; 169-174
2528-2247
2355-6579
 
Language ind
 
Relation http://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/3770/pdf
 
Coverage


 
Rights ##submission.copyrightStatement##
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library