Inrush Current Based on Fast Fourier Transform

INTEK: Jurnal Penelitian

View Publication Info
 
 
Field Value
 
Title Inrush Current Based on Fast Fourier Transform
 
Creator Zamzami, Mochamad Ilham
Prasetyono, Eka
Anggriawan, Dimas Okky
Yuliana, Mike
 
Subject Inrush Current; Harmonic Analysis; FFT; THD
 
Description Advances in technology have caused the use of electricity to increase rapidly. With advances in technology, this is followed by the use of increasingly efficient electrical components or equipment. This more efficient electrical equipment causes the impedance of the component to be smaller, causing a surge in current when it is turned on. This current surge, if not followed by appropriate safety precautions, will be damage other components. Each load has different waveform characteristics and current transient peaks. For this reason, it is necessary to analyze the transient condition of a load to overcome this. This paper will explain the characteristics of the inrush current of the load due to ignition. There are three loads used in this study, namely resistive, capacitive and inductive loads. Then the use of this load is simulated by giving different ignition angle values, namely 0, 60, and 90 degrees. The analysis used is the Fast Fourier Transform (FFT) method which is a derivative of the Discrete Fourier Transform. The inrush current spectrum in this simulation is simulated using Simulink MATLAB with switching system modeling using TRIAC. This inrush current simulation data collection uses a sampling frequency of 100 Khz and will be analyzed in the first of 5 cycles. For each load in this paper, the harmonic values for each ignition angle will be presented. The simulation results show that the inrush current is caused by the ignition angle value used and because of components that can deviate energy such as inductors and capacitors as well as components which at the time of starting have a low impedance value such as incandescent lamps. The simulation also shows that the use of switching components for setting the ignition angle causes an increase in the value of Total Harmonic Distortion (THD) but the peak current in the first cycle when the ignition angle is set decreases.
 
Publisher Politeknik Negeri Ujung Pandang
 
Contributor
 
Date 2021-11-12
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion


 
Format application/pdf
 
Identifier http://jurnal.poliupg.ac.id/index.php/Intek/article/view/2940
10.31963/intek.v8i2.2940
 
Source INTEK: Jurnal Penelitian; Vol 8, No 2 (2021): October 2021; 114-119
INTEK: Jurnal Penelitian; Vol 8, No 2 (2021): October 2021; 114-119
2615-5427
2339-0700
10.31963/intek.v8i2
 
Language eng
 
Relation http://jurnal.poliupg.ac.id/index.php/Intek/article/view/2940/pdf
 
Rights Copyright (c) 2021 Mochamad Ilham Zamzami, Eka Prasetyono, Dimas Okky Anggriawan
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library