Model Penilaian Tata Guna Lahan Dengan Citra Landsat 8 OLI Menggunakan Algoritma XGBoost Diwilayah Beresiko Tsunami (Studi Kasus : Kota Palu Sulawesi Tengah)

Indonesian Journal of Computing and Modeling

View Publication Info
 
 
Field Value
 
Title Model Penilaian Tata Guna Lahan Dengan Citra Landsat 8 OLI Menggunakan Algoritma XGBoost Diwilayah Beresiko Tsunami (Studi Kasus : Kota Palu Sulawesi Tengah)
 
Creator Wijaya, Yulia Fransisca
Prasetyo, Sri Yulianto Joko
 
Description Tsunami merupakan salah satu bencana alam yang berbahaya dimana dapat memakan korban jiwa, gelombang air yang besar pada bencana tsunami dapat bergerak sangat cepat dan dapat menghancurkan wilayah pemukiman yang berada dekat dengan laut. Dimana Indonesia merupakan salah satu negara yang berada diurutan pertama dari 256 negara didunia dengan ancaman tsunami yang tinggi. Pada tanggal 28 September 2018 terjadi sebuah tsunami pada Kota Palu yang memakan korban jiwa sebanyak 3.689 orang hilang dan meninggal. Penelitian ini bertujuan untuk membuat sebuah model peta yang dapat memberikan informasi mengenai klasifikasi lahan beresiko tsunami. Tingkat klasifikasi lahan beresiko tsunami dibagi menjadi 5 klasifikasi yaitu sangat rawan, tinggi, rendah, sangat rendah, dan tidak rawan. Hasil penelitian yang didapatkan pada nilai akurasi untuk semua parameter sebesar 0.909, sedangkan nilai perulangan pertama train mlogloss sebesar 0.6926 dan test mlogloss 0.6928, dan untuk perulangan keseratus mendapatkan nilai train mlogloss 0.6437 dan test mlogloss 0.6547, diketahui bahwa semakin banyak melakukan perulangan nilai dari pada test mglogloss dan train mglogloss akan semakin kecil perluang dari kesalahan Extreme Gradient Boosting. Berdasarkan hasil klasifikasi antara data yang sudah dan belum diprediksi menggunakan Extreme Gradient Boosting didapatkan 43 kelurahan yang mempunyai hasil yang berbeda. Sehingga Extreme Gradient Boosting dapat digunakan untuk pengambilan keputusan dalam membuat model klasifikasi lahan beresiko tsunami.
 
Publisher Pusat Studi Sistem Informasi dan Pemodelan Mitigasi Tropika
 
Date 2021-07-29
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
 
Format application/pdf
 
Identifier https://ejournal.uksw.edu/icm/article/view/4981
10.24246/icm.v4i1.4981
 
Source Indonesian Journal of Computing and Modeling; Vol 4 No 1 (2021); 23-28
2598-9421
10.24246/icm.v4i1
 
Language eng
 
Relation https://ejournal.uksw.edu/icm/article/view/4981/1821
 
Rights Copyright (c) 2021 Indonesian Journal of Computing and Modeling
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library