METHOD OF LINES IN DISTRIBUTED PROBLEMS OF EXPERIMENTAL DATA PROCESSING

International Academy Journal Web of Scholar

View Publication Info
 
 
Field Value
 
Title METHOD OF LINES IN DISTRIBUTED PROBLEMS OF EXPERIMENTAL DATA PROCESSING
METHOD OF LINES IN DISTRIBUTED PROBLEMS OF EXPERIMENTAL DATA PROCESSING
 
Creator Gennady Shvachych
Nataliіa Vozna
Ivashchenko Olena
Oleksandr Bilyi
Dmytro Moroz
 
Subject mathematical model, multiprocessor system, extreme problems, parallel structures, residual principle, coefficient problems.
mathematical model, multiprocessor system, extreme problems, parallel structures, residual principle, coefficient problems.
 
Description In many cases, the mathematical support of non-stationary thermal experiments is based on methods for solving the inverse heat conduction problem (IHCP), which include boundary thermal conditions determination, identification of heat and mass transfer processes, restoration of external and internal temperature fields, etc. However, at present, the main field of the IHCP application remains the processing and interpretation of the results of the thermal experiments. It was here where the most considerable theoretical and applied successes were achieved in methods' effectiveness and the breadth of their practical use. This paper highlights the issues of mathematical modeling of multidimensional non-stationary problems of metallurgical thermophysics.The primary research purpose aims at solving problems associated with identifying parallel structures of algorithms and programs and their reflection in the computers’ architecture in solving a wide range of applied problems. Supercomputers are currently inaccessible due to the enormous cost and service price. In this regard, a real alternative is cluster-type computing systems by which the simulation results are covered in this paper.Being a relatively new technology, cluster-type parallel computing systems are useful in solving a large class of non-stationary multidimensional problems, while allowing to increase the productivity and quality of computations. The software developed in this paper can be used to plan and process the results of a thermophysical experiment. The algorithms developed in the application program package are simply reconstructed to solve other coefficient and boundary problems of thermal conductivity. The developed algorithms for solving thermophysical problems are highly accurate and efficient: the test solution for IHCP with accurate input data coincides with the thermophysical features of the sample material. The developed software for processing the results of a thermophysical experiment is self-regulating. Moreover, it is quite merely tuned to the solution of others and, in particular, of boundary IHCP.
In many cases, the mathematical support of non-stationary thermal experiments is based on methods for solving the inverse heat conduction problem (IHCP), which include boundary thermal conditions determination, identification of heat and mass transfer processes, restoration of external and internal temperature fields, etc. However, at present, the main field of the IHCP application remains the processing and interpretation of the results of the thermal experiments. It was here where the most considerable theoretical and applied successes were achieved in methods' effectiveness and the breadth of their practical use. This paper highlights the issues of mathematical modeling of multidimensional non-stationary problems of metallurgical thermophysics.The primary research purpose aims at solving problems associated with identifying parallel structures of algorithms and programs and their reflection in the computers’ architecture in solving a wide range of applied problems. Supercomputers are currently inaccessible due to the enormous cost and service price. In this regard, a real alternative is cluster-type computing systems by which the simulation results are covered in this paper.Being a relatively new technology, cluster-type parallel computing systems are useful in solving a large class of non-stationary multidimensional problems, while allowing to increase the productivity and quality of computations. The software developed in this paper can be used to plan and process the results of a thermophysical experiment. The algorithms developed in the application program package are simply reconstructed to solve other coefficient and boundary problems of thermal conductivity. The developed algorithms for solving thermophysical problems are highly accurate and efficient: the test solution for IHCP with accurate input data coincides with the thermophysical features of the sample material. The developed software for processing the results of a thermophysical experiment is self-regulating. Moreover, it is quite merely tuned to the solution of others and, in particular, of boundary IHCP.
 
Publisher RS Global Sp. z O.O.
 
Date 2021-04-15
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://rsglobal.pl/index.php/wos/article/view/1951
10.31435/rsglobal_wos/30042021/7520
 
Source International Academy Journal Web of Scholar; No 2(52) (2021): International Academy Journal Web of Scholar
International Academy Journal Web of Scholar; № 2(52) (2021): International Academy Journal Web of Scholar
2518-1688
2518-167X
 
Language eng
 
Relation https://rsglobal.pl/index.php/wos/article/view/1951/1759
 
Rights Copyright (c) 2021 Gennady Shvachych, Nataliіa Vozna, Ivashchenko Olena, Oleksandr Bilyi, Dmytro Moroz
https://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library