Klasifikasi Wilayah Risiko Kekeringan Dengan Metode Random Forest dan SVM Menggunakan Data Penginderaan Jauh LANDSAT 8 OLI Studi kasus : Kabupaten Wonogiri

Indonesian Journal of Computing and Modeling

View Publication Info
 
 
Field Value
 
Title Klasifikasi Wilayah Risiko Kekeringan Dengan Metode Random Forest dan SVM Menggunakan Data Penginderaan Jauh LANDSAT 8 OLI Studi kasus : Kabupaten Wonogiri
 
Creator Yoesmarlan, Engles Marabangkit
Prasetyo, Sri Yulianto Joko
 
Description Kekeringan selalu terjadi di Indonesia setiap tahunnya. Salah satu daerah yang setiap tahun terkena dampak kekeringan adalah kabupaten Wonogiri. Berdasarkan kajian BPBD Wonogiri tahun 2019, ada 31 desa di Wonogiri terancam kekeringan. Tujuan diadakan penelitian ini adalah mengklasifikasikan wilayah di Wonogiri yang memiliki resiko kekeringan paling tinggi agar memudahkan pemberian bantuan. Penelitian ini menggunakan metode Machine Learning untuk menganalisa hasil ekstraksi dari citra Landsat-8 OLI yang berupa indeks vegetasi yaitu NDVI, NDWI, SAVI, dan VCI dengan membandingkan algoritma Random Forest dengan Support Vector Machine. Hasil dari pengolahan data Random Forest dan Support Vector Machine menunjukkan bahwa Random Forest memiliki nilai kappa 0.9911 sedangkan Support Vector Machine memiliki nilai kappa 0.5217 yang berarti algoritma Random Forest lebih baik dari Support Vector Machine karena makin tinggi nlai kappa maka semakin tinggi nilai akurasi prediksinya.  Dari hasil penelitian dapat diperoleh 10 kelurahan yang memiliki resiko kekeringan tinggi diantaranya kelurahan Bulusari, Sembukan, Tunggur, Hrgosari, Sidorejo, Tempurharjo, Sumberagung, Gemawang, Gnadipiro dan Conto.
 
Publisher Pusat Studi Sistem Informasi dan Pemodelan Mitigasi Tropika
 
Date 2021-03-02
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
 
Identifier https://ejournal.uksw.edu/icm/article/view/4597
 
Source Indonesian Journal of Computing and Modeling; Vol 3 No 2 (2020)
2598-9421
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library