Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot

Revista Facultad de Ingeniería

View Publication Info
 
 
Field Value
 
Title Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot
Desarrollo de un control adaptivo para el seguimiento de trayectoria de un robot móvil con ruedas
 
Creator Suarez-Rivera, Guiovanny
Muñoz-Ceballos, Nelson David
Vásquez-Carvajal, Henry Mauricio
 
Subject telerobotics
Lyapunov stability
Matlab
mobile robots
parametric model
simulation
estabilidad de Lyapunov
Matlab
modelo paramétrico
robots móviles
simulación
telerobótica
 
Description Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variations of the dynamics over time or disturbances occur. To solve this problem, we used a recursive least squares (RLS) method that uses a discrete-time structure first-order autoregressive model with exogenous variable (ARX). We design and modify PID adaptive self-adjusting controllers in phase margin and pole allocation. The main contribution of this methodology is that it allows the permanent and online update of the robot model and the parameters of the adaptive self-adjusting PID controllers. In addition, a Lyapunov stability analysis technique was implemented for path and trajectory tracking control, this makes the errors generated in the positioning and orientation of the robot when performing a given task tend asymptotically to zero.  The performance of the PID adaptive self-adjusting controllers is measured through the implementation of the criteria of the integral of the error, which allows to determine the controller of best performance, being in this case, the PID adaptive self-adjusting type in pole assignment, allowing the mobile robot greater precision in tracking the trajectories and paths assigned, as well as less mechanical and energy wear, due to its smooth and precise movements.
Los métodos clásicos de modelamiento y control aplicados a robots móviles de locomoción diferencial generan ecuaciones matemáticas que representan con aproximación la dinámica del sistema y funcionan relativamente bien cuando el sistema es lineal en un rango específico de trabajo. Sin embargo, pueden presentar baja precisión cuando hay muchas variaciones de la dinámica en el tiempo o se presentan perturbaciones.  Para solucionar este problema se empleó un método recursivo de mínimos cuadrados (RLS) que usa una estructura en tiempo discreto de primer orden del modelo autorregresivo con variable exógena (ARX). Se realiza el diseño y sintonización de controladores autoajustables adaptativos PID en margen de fase y en asignación de polos. El principal aporte de esta metodología es que permite la actualización permanente y en línea (on–line) del modelo del robot y de los parámetros de los controladores autoajustables adaptativos PID, además, se implementó una técnica de análisis de estabilidad de Lyapunov para el control de seguimiento de trayectorias y de caminos, esto hace que los errores generados en el posicionamiento y la orientación del robot al realizar una determinada tarea tiendan asintóticamente a cero. El desempeño de los controladores autoajustables adaptativos PID es medido a través de la implementación de los criterios de la integral del error, lo cuales permiten determinar el controlador de mejor rendimiento, siendo para este caso el del tipo autoajustable adaptivo PID en asignación de polos, permitiendo al robot móvil mayor precisión en el seguimiento de las trayectorias y caminos asignados, así como un menor desgaste mecánico y energético, debidos a sus movimientos suaves y precisos.
 
Publisher Universidad Pedagógica y Tecnológica de Colombia
 
Date 2021-02-13
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo de revista
 
Format application/pdf
application/pdf
 
Identifier https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022
10.19053/01211129.v30.n55.2021.12022
 
Source Revista Facultad de Ingeniería; Vol 30 No 55 (2021): January-March 2021 (Continuous Publication); e12022
Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e12022
2357-5328
0121-1129
 
Language eng
spa
 
Relation /*ref*/G. Cook, F. Zhang, "Kinematic Models for Mobile Robots," in Mobile Robots: Navigation, Control and Sensing, Surface Robots and AUVs, 2019, pp. 5-12. https://doi.org/10.1002/9781119534839.ch1
/*ref*/M. Ben-Ari, F. Mondada, Elements of Robotics, Springer, Switzerland, 2018.
/*ref*/R. Bibi, B. S. Chowdhry, R. A. Shah, "PSO based localization of multiple mobile robots employing LEGO EV3," in International Conference on Computing, Mathematics and Engineering Technologies, Sukkur, 2018, pp. 1-5. https://doi.org/10.1109/icomet.2018.8346452
/*ref*/T. G. Alves, W. F. Lages, R. V. Henriques, “Parametric Identification and Controller Design for a Differential-Drive Mobile Robot,” IFAC-PapersOnLine, vol. 51, no. 15, pp. 437-442, 2018. https://doi.org/10.1016/j.ifacol.2018.09.184
/*ref*/J. G. N. D. Carvalho Filho, E. Á. N. Carvalho, L. Molina, E. O. Freire, "The Impact of Parametric Uncertainties on Mobile Robots Velocities and Pose Estimation," IEEE Access, vol. 7, pp. 69070-69086, 2019. https://doi.org/10.1109/access.2019.2919335
/*ref*/M. Abdelwahab, V. Parque, A. M. R. Fath Elbab, A. A. Abouelsoud, S. Sugano, "Trajectory Tracking of Wheeled Mobile Robots Using Z-Number Based Fuzzy Logic," IEEE Access, vol. 8, pp. 18426-18441, 2020. https://doi.org/10.1109/ACCESS.2020.2968421
/*ref*/L. Fan, Y. Zhang, S. Zhang, "Dynamic Trajectory Tracking Control of Mobile Robot," in 5th International Conference on Information Science and Control Engineering, Zhengzhou, 2018, pp. 728-732. https://doi.org/10.1109/icisce.2018.00156
/*ref*/D. Dobriborsci, A. Kapitonov, N. Nikolaev, "The basics of the identification, localization and navigation for mobile robots," in International Conference on Information and Digital Technologies, Zilina, 2017, pp. 100-105. https://doi.org/10.1109/dt.2017.8024279
/*ref*/A. Kapitonov, E. Antonov, K. Artemov, D. Dobriborsci, E. Zamotaev, A. Karavaev, R. Al-Naim, O. Souzdalev, "Lego Mindstorms EV3 for teaching the basics of trajectory control problems," in IEEE Frontiers in Education Conference, United States, 2018, pp. 1-4. https://doi.org/10.1109/fie.2018.8659322
/*ref*/S. Mokhlis, S. Sadki, B. Bensassi, "System Identification of a DC Servo Motor Using ARX and ARMAX Models," in International Conference on Systems of Collaboration Big Data, Internet of Things & Security, Morocco, 2019, pp. 1-4. https://doi.org/10.1109/syscobiots48768.2019.9028015
/*ref*/B. Raafiu, P. A. Darwito, "Identification of Four-Wheel Mobile Robot based on Parametric Modelling," in International Seminar on Intelligent Technology and Its Applications, Indonesia, 2018, pp. 397-401. https://doi.org/10.1109/isitia.2018.8710761
/*ref*/M. A. Akmal, N. F. Jamin, N. M. A. Ghani, "Fuzzy logic controller for two wheeled EV3 LEGO robot," in IEEE Conference on Systems, Process and Control, Malacca, 2017, pp. 134-139. https://doi.org/10.1109/spc.2017.8313035
/*ref*/A. Saradagi, V. Muralidharan, V. Krishnan, S. Menta, A. D. Mahindrakar, "Formation Control and Trajectory Tracking of Nonholonomic Mobile Robots," IEEE Transactions on Control Systems Technology, vol. 26, no. 6, pp. 2250-2258, Nov. 2018. https://doi.org/10.1109/tcst.2017.2749563
/*ref*/A. Ashe, K. M. Krishna, "Dynamic Target Tracking & Collision Avoidance Behaviour of Person Following Robot Using Model Predictive Control," in 24th International Conference on System Theory, Control and Computing, Romania, 2020, pp. 660-666. https://doi.org/10.1109/icstcc50638.2020.9259720
/*ref*/R. C. Dorf, Modern Control Systems, 13th Edition, Prentice Hall. 2017.
/*ref*/F. Correa. J. Gallardo. N. Muñoz. R. Perez, “Estudio comparativo basado en métricas para diferentes arquitecturas de navegación reactiva,” Ingeniare, vol. 24, no. 1, pp. 46-54, Jan. 2016. https://doi.org/10.4067/s0718-33052016000100005
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10239
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/12022/10240
 
Rights Copyright (c) 2021 Guiovanny Suarez-Rivera, Nelson David Muñoz-Ceballos, M.Sc., Henry Mauricio Vásquez-Carvajal, M.Sc.
info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library