Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset

Revista Facultad de Ingeniería

View Publication Info
 
 
Field Value
 
Title Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
Uso de redes neuronales convolucionales en teléfonos inteligentes para la identificación de enfermedades bucales empleando un pequeño conjunto de datos
 
Creator Quintero-Rojas, Jormany
González, Jesús David
 
Subject dentistry
medical technology
preventive medicine
artificial intelligence
machine learning
oral diagnosis
oral disease identification
smartphone
odontología
tecnología médica
medicina preventiva
inteligencia artificial
aprendizaje automático
diagnóstico bucal
identificación de enfermedades bucales
teléfonos inteligentes
 
Description Image recognition and processing is a suitable tool in systems using machine learning methods. The addition of smartphones as complementary tools in the health area for diagnosis is a fact nowadays due to the advantages they present. Following the trend of providing tools for diagnosis, this research aimed to develop a prototype mobile application for the identification of oral lesions, including potentially malignant lesions, based on convolutional neural networks, as early detection of indications of possible types of cancer in the oral cavity. A mobile application was developed for the Android operating system that implemented the TensorFlow library and the Mobilenet V2 convolutional neural network model. The training of the model was performed by transfer learning with a database of 500 images distributed in five classes for recognition (Leukoplakia, Herpes Simplex Virus Type 1, Aphthous stomatitis, Nicotinic stomatitis, and No lesion). The 80% of the images were used for training and 20% for validation. It was obtained that the application presented at least 80% precision in the recognition of four class. The f1-score and area under curve metrics were used to evaluate performance. The developed mobile application presented an acceptable performance with metrics higher than 75% for the recognition of three lesions, on the other hand, it yielded an unfavorable performance lower than 70% for identifying nicotinic stomatitis cases with the chosen dataset.
El reconocimiento y procesamiento de imágenes es una herramienta adecuada en los sistemas que usan métodos de aprendizaje automático. La adición de teléfonos inteligentes como herramientas complementarias en el área de la salud para el diagnóstico es un hecho hoy en día por las ventajas que presentan. Siguiendo la tendencia de proporcionar herramientas para el diagnóstico, esta investigación tuvo como objetivo desarrollar una aplicación móvil prototipo para la identificación de lesiones bucales, incluyendo lesiones potencialmente malignas, basado en redes neuronales convolucionales, como la detección temprana de indicios de posibles tipos de cáncer en la cavidad bucal. Se desarrolló una aplicación móvil para el sistema operativo Android que implementó la librería de TensorFlow y el modelo de redes neuronales convolucionales Mobilenet V2. El entrenamiento del modelo se realizó por transferencia de aprendizaje con una base de datos de 500 imágenes distribuidas en cinco clases para el reconocimiento (Leucoplasia, Herpes Simple Virus Tipo 1, Estomatitis aftosa, Estomatitis nicotínica y Sin lesión). Se utilizó el 80% de las imágenes para el entrenamiento y el 20% para la validación. Se obtuvo que la aplicación presentó al menos 80% de exactitud en el reconocimiento de cuatro clases. Se usaron las métricas de f1-valor y área bajo la curva para evaluar el desempeño. La aplicación móvil desarrollada presentó un comportamiento aceptable con métricas mayores al 75% para el reconocimiento de tres lesiones, por otro lado, arrojó un desempeño desfavorable menor al 70% para identificar los casos de estomatitis nicotínica con el conjunto de datos elegido.
 
Publisher Universidad Pedagógica y Tecnológica de Colombia
 
Date 2021-02-07
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo de revista
 
Format application/pdf
application/pdf
 
Identifier https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846
10.19053/01211129.v30.n55.2021.11846
 
Source Revista Facultad de Ingeniería; Vol 30 No 55 (2021): January-March 2021 (Continuous Publication); e11846
Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e11846
2357-5328
0121-1129
 
Language eng
spa
 
Relation /*ref*/C. Carvajal, “El impacto del diagnóstico médico como experiencia traumática. Algunas reflexiones,” Revista Médica Clínica Las Condes, vol. 28, no. 6, pp. 841-848, 2017. https://doi.org/10.1016/j.rmclc.2017.10.010
/*ref*/A. Goic, “Sobre el origen y desarrollo del libro Semiología Médica,” Revista Médica Chile, vol. 146, no. 3, pp. 387-390, 2018. https://doi.org/10.4067/s0034-98872018000300387
/*ref*/M. Del Río, J. M. López, C. Vaquero, “La inteligencia artificial en el ámbito médico,” Revista Española de Investigaciones Quirúrgicas, vol. 21, no. 3, pp. 113-116, 2018.
/*ref*/R. Karthikayan, A. Sukumaran, M. Parangimalai, V. Raj, “Accuracy of smartphone based photography in screening for potentially malignant lesions among a rural population in Tamil Nadu: A cross-sectional study,” Digital Medicine, vol. 5, no. 2, pp. 56, 2019. https://doi.org/10.4103/digm.digm_29_18
/*ref*/A. Pereira, S. A. Lazaro, C. G. Molina-Bastos, V. L. Oliveira, R. Nunes, M. Rodrigues, V. Coelho, “Teledentistry in the diagnosis of oral lesions: A systematic review of the literature,” Journal of the American Medical Informatics Association, vol. 27, no. 7, pp. 1166-1172, 2020. https://doi.org/10.1093/jamia/ocaa069
/*ref*/M. Estai, Y. Kanagasingam, D. Xiao, J. Vignarajan, B. Huang, E. Kruger, M. Tennant, “A proof-of-concept evaluation of a cloud-based store-and-forward telemedicine app for screening for oral diseases,” Journal of telemedicine and telecare, vol. 22, no. 6, pp. 319-325, 2016. https://doi.org/10.1177/1357633X15604554
/*ref*/J. González, “Diseño e implementación de una aplicación móvil inteligente en Android para reconocimiento de lesiones y enfermedades cutáneas y en la mucosa bucal,” Grade Thesis, Universidad de Los Andes, Mérida, Venezuela, 2019.
/*ref*/R. Anantharaman, M. Velazquez, Y. Lee, “Utilizing Mask R-CNN for detection and segmentation of oral diseases,” in IEEE International Conference on Bioinformatics and Biomedicine, Spain, 2018, pp. 2197-2204. https://doi.org/10.1109/BIBM.2018.8621112
/*ref*/A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv Preprint, 2017.
/*ref*/A. Leite, K. Vasconceslos, H. Willems, R. Jacobs, “Radiomics and machine learning in oral healthcare,” Proteomics Clinical Applications, vol. 14, e1900040, 2020. https://doi.org/10.1002/prca.201900040
/*ref*/A. Bhattacharya, A. Young, A. Wong, S. Stalling, M. Wei, D. Hadley, “Precision Diagnosis Of Melanoma And Other Skin Lesions From Digital Images,” in AMIA Joint Summits on Translational Science proceedings, 2017, pp. 220-226
/*ref*/J. Velasco, C. Pascion, J. W. Alberio, J. Apuang, J. S. Cruz, M. A. Gomez, B. Jr. Molina, L. Tuala, A. Thio-ac, R. Jr. Jorda, “A Smartphone-Based Skin Disease Classification Using MobileNet CNN,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 5, pp. 2632-2637, 2019. https://doi.org/10.30534/ijatcse/2019/116852019
/*ref*/A. Romero-Lopez, X. Giro-i-Nieto, J. Burdick, O. Marques, “Skin Lesion Classification from Dermoscopic Images Using Deep Learning Techniques,” in Biomedical Engineering, Canada, 2017, pp. 49-54. https://doi.org/10.2316/P.2017.852-053
/*ref*/J. Burdick, O. Marques, J. Weinthal, B. Furht, “Rethinking Skin Lesion Segmentation in a Convolutional Classifier,” Journal of Digital Imaging, vol. 31, no. 4, pp. 4354440, 2018. https://doi.org/10.1007/s10278-017-0026-y
/*ref*/S. Han, M. Kim, W. Lim, G. Park, I. Park, S. Chang, “Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm,” Journal of Investigative Dermatology, vol. 138, no. 7, pp. 1529-1538, 2018. https://doi.org/10.1016/j.jid.2018.01.028
/*ref*/E. Ziaten-Cerezo, “Clasificación de lesiones en la piel usando aprendizaje profundo,” Grade Thesis, Universidad de Málaga, Málaga, Spain, 2019.
/*ref*/J. Yap, W. Yolland, P. Tschandl, “Multimodal skin lesion classification using deep learning,” Experimental Dermatology, vol. 27, no. 11, pp. 1261-1267, 2018. https://doi.org/10.1111/exd.13777
/*ref*/T. Domènech, “Clasificación de imágenes dermatoscópicas utilizando Redes Neuronales Convolucionales e información de metadatos,” Grade Thesis, Universidad Politécnica de Catalunya, Barcelona, Spain, 2019.
/*ref*/C. S. Cheng, P. Shueng, C. Chang, C. Kuo, “Adapting an Evidence-based Diagnostic Model for Predicting Recurrence Risk Factors of Oral Cancer”, Journal of Universal Computer Science, vol. 24, no. 6, pp. 742-752, 2018. https://doi.org/10.3217/jucs-024-06-0742
/*ref*/R. Méndez-Hernández, “Aprendizaje profundo para la segmentación de lesiones pigmentadas de la piel,” Grade Thesis, Universidad de Sevilla, Sevilla, Spain, 2019.
/*ref*/A. Rana, G. Yauney, L. C. Wong, O. Gupta, A. Muftu, P. Shah, “Automated Segmentation of Gingival Diseases from Oral Images,” in IEEE Healthcare Innovations and Point of Care Technologies, United States, 2017, pp. 144-147. https://doi.org/10.1109/HIC.2017.8227605
/*ref*/M. Estai, Y. Kanagasingam, B. Huang, J. Shiikha, E. Kruger, S. Bunt, M. Tenant, “Comparison of a smartphone-based photographic method with face-to-face caries assessment: a mobile teledentistry model,” Telemedicine and e-Health, vol. 23, no. 5, pp. 435-440, 2017. https://doi.org/10.1089/tmj.2016.0122
/*ref*/L. Jae‐Hong, K. Do-Hyung, J. Seong-Nyum, “Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network,” Oral Diseases, vol. 26, pp. 152-158, 2019. https://doi.org/10.1111/odi.13223
/*ref*/J. Yang, X. Sun, J. Liang, P. L. Rosin, “Clinical Skin Lesion Diagnosis Using Representations Inspired by Dermatologist Criteria,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, United States, 2018, pp. 1258-1266. https://doi.org/10.1109/CVPR.2018.00137
/*ref*/J. Serrano-Fernández, “Sistema de ayuda al diagnóstico para la detección temprana de melanomas,” Grade Thesis, Universidad Carlos III, Madrid, Spain, 2017.
/*ref*/Y. Gal, R. Islam, Z. Ghahramani, “Deep Bayesian Active Learning with Image Data,” in Proceedings 34th International Conference on Machine Learning, Australia, 2017, pp. 1183-1192. https://doi.org/10.17863/CAM.11070
/*ref*/J. Sánchez-Hernández, D. Hernández-Rabadán, “Comparación de métodos de clasificación aplicados al diagnóstico de melanomas malignos mediante asimetría,” Programación Matemática y Software, vol. 6, no. 2, pp. 51-56, 2014.
/*ref*/J. Kawahara, A. BenTaieb, G. Hamarneh “Deep features to classify skin lesions,” in IEEE 13th International Symposium on Biomedical Imaging, Praga, 2016, pp. 1397-1400. https://doi.org/10.1109/ISBI.2016.7493528
/*ref*/U. Kalwa, C. Legner, T. Kong, S.Pandey, “Skin Cancer Diagnostics with an All-Inclusive Smartphone Application,” Symmetry, vol. 11, no. 6, pp. 790, 2019. https://doi.org/10.3390/sym11060790
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10233
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10234
 
Rights Copyright (c) 2021 Jormany Quintero-Rojas, M.Sc., Jesús David González
info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library