Electrolyte disorders induced by drugs and toxic substances

Medicina y Laboratorio

View Publication Info
 
 
Field Value
 
Title Electrolyte disorders induced by drugs and toxic substances
Trastornos electrolíticos inducidos por fármacos y sustancias tóxicas
 
Creator Chinchilla-Escobar, Edna
Héctor Pérez-Madrid
Jiménez-Ospina, Laura
Cabrera-Rojas, Diana
Palacín-Bernal, Natalia
Sepúlveda-Barbosa, Germán
Piedrahita-Pérez, Juan D.
Díaz-Vélez, Luisa F.
Quintero-Aguirre, Juliana
Montoya-Giraldo, María A.
 
Subject electrolytes
drugs
toxicity
sodium-potassium pump
diuretics
alcohol.
electrolitos
fármacos
toxicidad
bomba de sodio potasio
diuréticos
alcohol.
 
Description Diseases can generate an electrolyte imbalance as part of their pathophysiology, as well as chronic use of some medications, and toxic substances available in our environment. Despite all the separate statistical data, the overall incidence of fluid and electrolyte disorders secondary to drugs or toxic substances remains unknown, and possibly underreported; therefore, the objective of this review is to analyze electrolyte disorders caused by some medications and toxic substances, and describe the mechanism through which changes in sodium, potassium, magnesium, calcium and phosphorus occur, in particular, in order to alert health professionals when facing this type of conditions in their clinical practice. Knowledge of drug and toxic-related adverse effects is important to effectively prevent, identify, and manage complications that can be potentially life-threatening. This review intends to be a reference for supporting health professionals in these situations.
 
Las enfermedades pueden generar un desequilibrio de electrolitos como parte de su fisiopatología, al igual que los medicamentos usados crónicamente y algunas sustancias tóxicas disponibles en nuestro medio. A pesar de todos los datos estadísticos existentes, la incidencia global de los trastornos electrolíticos secundarios a fármacos o sustancias tóxicas permanece desconocida, y, posiblemente, subregistrada; por lo tanto, el objetivo de esta revisión es analizar los trastornos electrolíticos que causan algunos medicamentos y sustancias tóxicas, y describir el mecanismo a través del cual se producen las alteraciones, en particular, del sodio, potasio, magnesio, calcio y fósforo, con el fin de alertar a los profesionales de la salud en el momento de enfrentarse a este tipo de condiciones en su práctica clínica. El conocimiento de los efectos adversos relacionados con medicamentos y tóxicos es importante para prevenir, identificar y gestionar de forma eficaz, complicaciones que son potencialmente peligrosas. Esta revisión pretende ser un referente de apoyo para los profesionales de la salud en estas situaciones.
 
 
Publisher EDIMECO S.A.
 
Date 2020-09-04
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://medicinaylaboratorio.com/index.php/myl/article/view/352
10.36384/01232576.352
 
Source Medicina & Laboratorio; Vol. 25 No. 1 (2021); 363-392
Medicina y Laboratorio; Vol. 25 Núm. 1 (2021); 363-392
2500-7106
0123-2576
 
Language spa
 
Relation https://medicinaylaboratorio.com/index.php/myl/article/view/352/332
/*ref*/Shrimanker I, Bhattarai S. Electrolytes. Treasure Island (FL): StatPearls Publishing; 2020. Acceso 10 de junio de 2020. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK541123/. 2. Albalate-Ramón M, Alcázar-Arroyo R, De Sequera-Ortíz P. Alteraciones del agua y del sodio. Trastornos del Agua. Disnatremias. In: Lorenzo V, López-Gómez JM, eds. Nefrología al día. Barcelona, España: Sociedad Española de Nefrología; 2019. 3. Wahid-Bhat A, Wahid-Bhat B. Prevalence of patient load with electrolyte abnormalities presenting to emergency department at a tertiary care hospital. Int J Health Sci Res 2020;10:19-23. 4. Seay NW, Lehrich RW, Greenberg A. Diagnosis and management of disorders of body tonicity- hyponatremia and hypernatremia: Core curriculum 2020. Am J Kidney Dis 2020;75:272-286. https://doi.org/10.1053/j.ajkd.2019.07.014. 5. Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, et al. Guía de práctica clínica sobre el diagnóstico y tratamiento de la hiponatremia. Nefrología 2017;37:370-380. https://doi.org/10.1016/j.nefro.2017.03.021. 6. Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis 2008;52:144-153. https://doi.org/10.1053/j.ajkd.2008.03.004. 7. Gamboa-Arroyave JG. Capítulo 12. Paciente con trastorno del sodio: puntos de buena práctica clínica. In: Espíndola-Fernández D, ed. Memorias Medicina Interna 2020. 20a ed. Medellín, Colombia: Universidad de Antioquia; 2020. p. 107-113. 8. Traub SJ, Hoffman RS, Nelson LS. The "ecstasy" hangover: hyponatremia due to 3,4-methylenedioxymethamphetamine. J Urban Health 2002;79:549-555. https://doi.org/10.1093/jurban/79.4.549. 9. Boulanger-Gobeil C, St-Onge M, Laliberté M, Auger PL. Seizures and hyponatremia related to ethcathinone and methylone poisoning. J Med Toxicol 2012;8:59-61. https://doi.org/10.1007/s13181-011-0159-1. 10. Carter M, Abdi A, Naz F, Thabet F, Vyas A. A mercury toxicity case complicated by hyponatremia and abnormal endocrinological test results. Pediatrics 2017;140:e20161402. https://doi.org/10.1542/peds.2016-1402. 11. Windpessl M, Schwarz C, Wallner M. “Bowel prep hyponatremia“: A state of acute water intoxication facilitated by low dietary solute intake: case report and literature review. BMC Nephrology 2017;18:54. https://doi.org/10.1186/s12882-017-0464-2. 12. Gallagher JJ, Branski LK, Williams-Bouyer N, Villarreal C, Herndon DN. Chapter 12. Treatment of infection in burns. In: Herndon DN, ed. Total Burn Care. 4th ed. London: W.B. Saunders; 2012. p. 137-156.e132. https://doi.org/10.1016/B978-1-4377-2786-9.00012-6. 13. Lodhi MU, Saleem TS, Kuzel AR, Khan D, Syed IA, Rahim U, et al. "Beer Potomania" - A syndrome of severe hyponatremia with unique pathophysiology: Case studies and literature review. Cureus 2017;9:e2000. https://doi.org/10.7759/cureus.2000. 14. Liamis G, Milionis HJ, Elisaf M. A review of drug-induced hypernatraemia. NDT Plus 2009;2:339-346. https://doi.org/10.1093/ndt-plus/sfp085. 15. Scoggin C, McClellan JR, Cary JM. Hypernatraemia and acidosis in association with topical treatment of burns. Lancet 1977;1:959. https://doi.org/10.1016/s0140-6736(77)92263-2. 16. Cuzzo B, Padala SA, Lappin SL. Physiology, vasopressin. Treasure Island (FL): StatPearls Publishing; 2020. Acceso 13 de julio de 2020. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK526069/. 17. Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LR, Hoffman RS. Goldfrank's Toxicologic Emergencies. 11e ed. New York, USA: McGraw-Hill Education; 2019. ISBN 978-1-259-85961-8. 18. Greenlee M, Wingo CS, McDonough AA, Youn J-H, Kone BC. Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann Intern Med 2009;150:619- 625. https://doi.org/10.7326/0003-4819-150-9-200905050-00008. 19. Singh Rehan H, Hotha P. Antimicrobial agents-induced hypokalemia: A possible causality association. Indian J Crit Care Med 2019;23:175-177. https://doi.org/10.5005/jp-journals-10071-23148. 20. Veltri KT, Mason C. Medication-induced hypokalemia. P T 2015;40:185-190. 21. Sears MR. Adverse effects of beta-agonists. J Allergy Clin Immunol 2002;110:S322-328. https://doi.org/10.1067/mai.2002.129966. 22. Gennari FJ. Hypokalemia. N Engl J Med 1998;339:451-458. https://doi.org/10.1056/nejm199808133390707. 23. Tajima Y. Coffee-induced hypokalaemia. Clin Med Insights Case Rep 2010;3:9-13. https://doi.org/10.4137/ccrep.s4329. 24. Thongprayoon C, Petnak T, Kaewput W, Mao MA, Kovvuru K, Kanduri SR, et al. Hospitalizations for acute salicylate intoxication in the United States. J Clin Med 2020;9:2638. https://doi.org/10.3390/jcm9082638. 25. Yang Q, Guo X, Liu D. Hypokalemia caused by quetiapine and risperidone treatment in schizophrenia: A case report. Shanghai Arch Psychiatry 2018;30:204-206. https://doi.org/10.11919/j.issn.1002-0829.217168. 26. Alexandridis G, Liberopoulos E, Elisaf M. Aminoglycoside-induced reversible tubular dysfunction. Pharmacology 2003;67:118-120. https://doi.org/10.1159/000067797. 27. Mohammadianpanah M, Omidvari S, Mosalaei A, Ahmadloo N. Cisplatin-induced hypokalemic paralysis. Clin Ther 2004;26:1320-1323. https://doi.org/10.1016/s0149-2918(04)80177-2. 28. Prasad DR. Reduced levels of serum potassium and plasma cholinesterase in acute organophosphate poisoning: Possible predictive markers. Asia Pac J Med Toxicol 2014;3:68-72. https://doi.org/10.22038/apjmt.2014.3046. 29. Bhoelan BS, Stevering CH, van der Boog AT, van der Heyden MA. Barium toxicity and the role of the potassium inward rectifier current. Clin Toxicol (Phila) 2014;52:584-593. https://doi.org/10.3109/15563650.2014.923903. 30. Guzmán RM, Morales R, Otañez C, García- Dolores F. Intoxicación y muerte por inhalación de tolueno: revisión de caso post- mortem. Rev Mex Med Forense 2020;5:1-10. https://doi.org/10.25009/revmedforense.v5i1.2727. 31. Watanabe R. Hyperkalemia in chronic kidney disease. Rev Assoc Med Bras (1992) 2020;66:S31-36. https://doi.org/10.1590/1806-9282.66.S1.31. 32. Hunter RW, Bailey MA. Hyperkalemia: pathophysiology, risk factors and consequences. Nephrol Dial Transplant 2019;34:2-11. https://doi.org/10.1093/ndt/gfz206. 33. Ben-Salem C, Badreddine A, Fathallah N, Slim R, Hmouda H. Drug-induced hyperkalemia. Drug Saf 2014;37:677-692. https://doi.org/10.1007/s40264-014-0196-1. 34. Perazella MA. Drug-induced hyperkalemia: old culprits and new offenders. Am J Med 2000;109:307-314. https://doi.org/10.1016/s0002-9343(00)00496-4. 35. Hawboldt J, McGrath D. Possible metoprolol-induced hyperkalemia. J Pharm Pract 2006;19:320-325. https://doi.org/10.1177/0897190007300728. 36. Martyn JA, Richtsfeld M. Succinylcholine- induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology 2006;104:158- 169. https://doi.org/10.1097/00000542-200601000-00022. 37. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 2009;4:481-508. https://doi.org/10.2215/cjn.04800908. 38. Palmer BF. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med 2004;351:585-592. https://doi.org/10.1056/NEJMra035279. 39. Momoniat T, Ilyas D, Bhandari S. ACE inhibitors and ARBs: Managing potassium and renal function. Cleve Clin J Med 2019;86:601-607. https://doi.org/10.3949/ccjm.86a.18024. 40. Sharma J, Salhotra R. Mannitol-induced intraoperative hyperkalemia, a little- known clinical entity. J Anaesthesiol Clin Pharmacol 2012;28:546-547. https://doi.org/10.4103/0970-9185.101965. 41. Imamura T, Matsuura Y, Nagoshi T, Ishikawa T, Date H, Kita T, et al. Hyperkalemia induced by the calcium channel blocker, benidipine. Intern Med 2003;42:503-506. https://doi.org/10.2169/internalmedicine.42.503. 42. Ahmed F, Mohammed A. Magnesium: The forgotten electrolyte--A review on hypomagnesemia. Med Sci (Basel) 2019;7:56. https://doi.org/10.3390/medsci7040056. 43. Al Alawi AM, Majoni SW, Falhammar H. Magnesium and human health: Perspectives and research directions. Int J Endocrinol 2018;2018:9041694. https://doi.org/10.1155/2018/9041694. 44. Gröber U. Magnesium and drugs. Int J Mol Sci 2019;20:2094. https://doi.org/10.3390/ijms20092094. 45. Danziger J, William JH, Scott DJ, Lee J, Lehman LW, Mark RG, et al. Proton-pump inhibitor use is associated with low serum magnesium concentrations. Kidney Int 2013;83:692-699. https://doi.org/10.1038/ki.2012.452. 46. Perazella MA. Proton pump inhibitors and hypomagnesemia: a rare but serious complication. Kidney Int 2013;83:553-556. https://doi.org/10.1038/ki.2012.462. 47. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005;115:1651-1658. https://doi.org/10.1172/jci24134. 48. Arampatzis S, Funk GC, Leichtle AB, Fiedler GM, Schwarz C, Zimmermann H, et al. Impact of diuretic therapy-associated electrolyte disorders present on admission to the emergency department: a cross-sectional analysis. BMC Med 2013;11:83. https://doi.org/10.1186/1741-7015-11-83. 49. Petri M, Cumber P, Grimes L, Treby D, Bryant R, Rawlins D, et al. The metabolic effects of thiazide therapy in the elderly: a population study. Age Ageing 1986;15:151-155. https://doi.org/10.1093/ageing/15.3.151. 50. Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. EGF increa- ses TRPM6 activity and surface expression. J Am Soc Nephrol 2009;20:78-85. https://doi.org/10.1681/asn.2008030327. 51. Lajer H, Kristensen M, Hansen HH, Christen- sen S, Jonassen T, Daugaard G. Magnesium and potassium homeostasis during cisplatin treatment. Cancer Chemother Pharmacol 2005;55:231-236. https://doi.org/10.1007/s00280-004-0899-6. 52. Chou CL, Chen YH, Chau T, Lin SH. Acquired bartter-like syndrome associated with gentamicin administration. Am J Med Sci 2005;329:144-149. https://doi.org/10.1097/00000441-200503000-00007. 53. Cheungpasitporn W, Thongprayoon C, Qian Q. Dysmagnesemia in hospitalized patients: Prevalence and prognostic importance. Mayo Clin Proc 2015;90:1001-1010. https://doi.org/10.1016/j.mayocp.2015.04.023. 54. Liu M, Yang H, Mao Y. Magnesium and liver disease. Ann Transl Med 2019;7:578. https://doi.org/10.21037/atm.2019.09.70. 55. Yanagawa Y, Suzuki C, Imamura T. Recovery of paralysis in association with an improvement of hypomagnesemia due to alcoholism. Am J Emerg Med 2011;29:242. https://doi.org/10.1016/j.ajem.2010.02.028. 56. Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci 2017;54:506-528. https://doi.org/10.1080/10408363.2017.1408562. 57. Todorovic T, Vujanovic D, Dozic I, Petkovic-Curcin A. Calcium and magnesium content in hard tissues of rats under condition of subchronic lead intoxication. Magnes Res 2008;21:43- 50. 58. Wakai E, Ikemura K, Sugimoto H, Iwamoto T, Okuda M. Risk factors for the development of hypermagnesemia in patients prescribed magnesium oxide: a retrospective cohort study. J Pharm Health Care Sci 2019;5:4. https://doi.org/10.1186/s40780-019-0133-7. 59. Eddleston M, Chowdhury FR. Pharmacological treatment of organophosphorus insecticide poisoning: the old and the (possible) new. Br J Clin Pharmacol 2016;81:462-470. https://doi.org/10.1111/bcp.12784. 60. Singh Y, Joshi S, Satyawali V, Gupta A. Acute aluminium phosphide poisoning, what is new? Egypt J Intern Med 2014;26:99-103. https://doi.org/10.4103/1110-7782.145298. 61. Abukurah AR, Moser AM, Jr., Baird CL, Randall RE, Jr., Setter JG, Blanke RV. Acute sodium fluoride poisoning. JAMA 1972;222:816-817. https://doi.org/10.1001/jama.1972.03210070046014. 62. Weng YM, Chen SY, Chen HC, Yu JH, Wang SH. Hypermagnesemia in a constipated female. J Emerg Med 2013;44:e57-60. https://doi.org/10.1016/j.jemermed.2011.09.004. 63. Schwalfenberg GK, Genuis SJ. The importance of magnesium in clinical healthcare. Scientifica (Cairo) 2017;2017:4179326. https://doi.org/10.1155/2017/4179326. 64. Walker P, Parnell S, Dillon RC. Epsom salt ingestion leading to severe hypermagnesemia necessitating dialysis. J Emerg Med 2020;58:767-770. https://doi.org/10.1016/j.jemermed.2020.04.023. 65. Société d’Exploitation des Salines de Salies- de-Béarn. Licor madre: un concentrado de agua termal. Route de Samadet, Francia: Société d’Exploitation des Salines de Salies-de-Béarn; 2020. Acceso 01 de julio de 2020. Disponible en http://www.sel-salies-de-bearn.com/es/pro-duit/eaux-meres/#:~:text=Despu%C3%A9s%20de%20extraer%20la%20sal,magnesio%20y%20en%20varios%20oligoelementos. 66. Jung H, Paik J, Kim J, Han S. A case report of bittern intoxication. J Emerg Trauma Shock 2015;8:108-109. https://doi.org/10.4103/0974-2700.145426. 67. Yu E, Sharma S. Physiology, Calcium. StatPearls. Treasure Island (FL): Publishing Stat- Pearls 2020. Acceso 02 de noviembre de 2020. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK482128/. 68. Toribio RE. Disorders of calcium and phosphate metabolism in horses. Vet Clin North Am Equine Pract 2011;27:129-147. https://doi.org/10.1016/j.cveq.2010.12.010. 69. Liamis G, Milionis HJ, Elisaf M. A review of drug-induced hypocalcemia. J Bone Miner Me- tab 2009;27:635-642. https://doi.org/10.1007/s00774-009-0119-x. 70. Cholst IN, Steinberg SF, Tropper PJ, Fox HE, Segre GV, Bilezikian JP. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984;310:1221-1225. https://doi.org/10.1056/nejm198405103101904. 71. Park DS, Vassilopoulou Sellin R, Tu S. Estramustine-related hypocalcemia in patients with prostate carcinoma and osteoblastic metastases. Urology 2001;58:105. https://doi.org/10.1016/s0090-4295(01)01119-0. 72. Bansal N, Katz R, de Boer IH, Kestenbaum B, Siscovick DS, Hoofnagle AN, et al. Influence of estrogen therapy on calcium, phosphorus, and other regulatory hormones in postmenopausal women: the MESA study. J Clin Endocrinol Metab 2013;98:4890-4898. https://doi.org/10.1210/jc.2013-2286. 73. Louie KS, Erhard C, Wheeler DC, Stenvinkel P, Fouqueray B, Floege J. Cinacalcet-induced hypocalcemia in a cohort of European haemodialysis patients: predictors, therapeutic approaches and outcomes. J Nephrol 2019. https://doi.org/10.1007/s40620-019-00686-z. 74. Silva OL. The not-so-harmless laxative. Arch Intern Med 1978;138:1067. 75. Do W-S, Park J-K, Park M-I, Kim H-S, Kim S-H, Lee D-H. Bisphosphonate-induced severe hypocalcemia: A case report. J Bone Metab 2012;19:139-145. https://doi.org/10.11005/jbm.2012.19.2.139. 76. Wang Z, Schuetz EG, Xu Y, Thummel KE. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol 2013;136:54-58. https://doi.org/10.1016/j.jsbmb.2012.09.012. 77. Elisaf M, Liamis G, Liberopoulos E, Siamopoulos KC. Mechanisms of hypocalcemia in alcoholic patients. Nephron 2001;89:459-460. https://doi.org/10.1159/000046120. 78. Hodgman M, Marraffa JM, Wojcik S, Grant W. Serum calcium concentration in ethylene glycol poisoning. J Med Toxicol 2017;13:153- 157. https://doi.org/10.1007/s13181-017-0598-4. 79. Bridwell RE, Carius BM, Tomich EB, Maddry JK. Intentional toxic ingestion of sodium fluoride: A case report. Cureus 2019;11:e5025. https://doi.org/10.7759/cureus.5025. 80. Roy A, Taitelman U, Bursztein S. Evaluation of the role of ionized calcium in sodium fluoroacetate (“1080”) poisoning. Toxicol Appl Pharmacol 1980;56:216-220. https://doi.org/10.1016/0041-008X(80)90292-6. 81. McKee D, Thoma A, Bailey K, Fish J. A review of hydrofluoric acid burn management. Plast Surg 2014;22:95-98. 82. Sadiq NM, Naganathan S, Badireddy M. Hypercalcemia, StatPearls. Treasure Island (FL): StatPearls Publishing; 2020. Acceso 04 de junio de 2020. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK430714/. 83. Skwarek A, Pachucki J, Bednarczuk T, Żurecka Z, Popow M, Kondracka A, et al. Milk-alkali syndrome (MAS) as a complication of the treatment of hypoparathyroidism - A case study. Endokrynol Pol 2018;69:200-204. https://doi.org/10.5603/EP.a2018.0015. 84. Lowe H, Cusano NE, Binkley N, Blaner WS, Bilezikian JP. Vitamin D toxicity due to a commonly available "over the counter" remedy from the Dominican Republic. J Clin Endocrinol Metab 2011;96:291-295. https://doi.org/10.1210/jc.2010-1999. 85. Belden TL, Ragucci DP. Hypercalcemia induced by 13-cis-retinoic acid in a patient with neuroblastoma. Pharmacotherapy 2002;22:645-648. https://doi.org/10.1592/phco.22.8.645.33207. 86. Bhalla K, Ennis DM, Ennis ED. Hypercalcemia caused by iatrogenic hypervitaminosis A. J Am Diet Assoc 2005;105:119-121. https://doi.org/10.1016/j.jada.2004.10.006. 87. Meehan AD, Udumyan R, Kardell M, Landén M, Järhult J, Wallin G. Lithium-associated hypercalcemia: Pathophysiology, prevalence, management. World J Surg 2018;42:415-424. https://doi.org/10.1007/s00268-017-4328-5. 88. Shrivastava B, Dipak N, Karajagi A, Doshi R. Severe neonatal hypercalcemia secondary to aluminium toxicity. Int J Contemp Pediatrics 2017;5:254. https://doi.org/10.18203/2349-3291.ijcp20175595. 89. García-Martín A, Varsavsky M, Cortés-Ber- donces M, Ávila-Rubio V, Alhambra-Expósito MR, Novo-Rodríguez C, et al. Phosphate disorders and clinical management of hypo- phosphatemia and hyperphosphatemia. Endo- crinol Diabetes Nutr 2020;67:205-215. https://doi.org/10.1016/j.endinu.2019.06.004. 90. Shaker JL, Deftos L. Calcium and phosphate homeostasis. Endotext. South Dartmouth (MA): MDText.com; 2018. Acceso 04 de julio de 2020. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK279023/. 91. Liamis G, Milionis HJ, Elisaf M. Medication-induced hypophosphatemia: a review. QJM 2010;103:449-459. https://doi.org/10.1093/qj-med/hcq039. 92. Megapanou E, Florentin M, Milionis H, Elisaf M, Liamis G. Drug-induced hypophosphatemia: Current insights. Drug Saf 2020;43:197-210. https://doi.org/10.1007/s40264-019-00888-1. 93. Goyal R, Jialal I. Hyperphosphatemia. Stat- Pearls. Treasure Island (FL): StatPearls Publis- hing; 2020 Acceso 03 de junio de 2020. Dispo- nible en https://www.ncbi.nlm.nih.gov/books/NBK551586/. 94. Streja E, Lau WL, Goldstein L, Sim JJ, Molnar MZ, Nissenson AR, et al. Hyperphosphatemia is a combined function of high serum PTH and high dietary protein intake in dialysis patients. Kidney Int Suppl 2013;3:462-468. https://doi.org/10.1038/kisup.2013.96.
 
Rights https://creativecommons.org/licenses/by-nc-nd/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library