DNA damage as a potential marker in the clinical follow-up of female patients with treated cancer: DNA damage in treated cancer

Revista Colombiana de Cancerología

View Publication Info
 
 
Field Value
 
Title DNA damage as a potential marker in the clinical follow-up of female patients with treated cancer: DNA damage in treated cancer
Daño del ADN como marcador potencial en el seguimiento clínico de pacientes femeninas con cáncer tratado : Daño del ADN en cáncer tratado
 
Creator Pupo Balboa, Judith Beatriz
Castellanos, Martha Robaina
Gutiérrez-Guriérrez, Reinaldo
Pandolfi-Blanco, Anamarys
Fariñas Rodríguez, Lucia
 
Subject Cancer; alkaline comet assay; neutral comet assay; DNA damage
Cáncer; Ensayo cometa alcalino; Ensayo cometa neutral; Daño del ADN
 
Description ABSTRACT
Objective: identify individual differences in basal DNA damage (DB) of peripheral leukocytes in women with cancer in remission. Methods: a cross-sectional analytical study involving 24 women with cancer in remission from different locations, and 24 supposedly healthy women. Alkaline Comet assay and the neutral variant were used to determine single strand breaks (DB-A) and double strand breaks of DNA (DB-N), respectively.
Results: even though there were no differences between the mean values of DNA damage in patients and controls (DB-N: p = 0.43 and DB-A: p = 0.13), 41.6% of patients presented an increase of one type or another of DNA breaks, compared to the corresponding cutoff points of control women. DB-N was correlated with increasing age (r2 = 0.1833; r = 0.4281; p = 0.036) in patients. DB-A was higher in those who had received anti-cancer polytherapy (p = 0.024) and in those who were undergoing treatment with tamoxifen (p = 0.033), while it was lower in those who consumed antioxidants (p=0.006) and in those who combined tamoxifen and antioxidants (p=0.020).
Conclusions: individual differences were identified in both types of DNA strand breaks, which are of medical interest in the patients studied. Basal DNA damage determined by comet assay is a potential tool in clinical follow-up of patients with cancer in remission.
Objetivo: Identificar diferencias individuales en el daño basal (DB) del ADN de linfocitos periféricos de mujeres con cáncer en remisión. Métodos: Estudio analítico de corte transversal en el que participaron 24 mujeres con cáncer en remisión de diferentes localizaciones y 24 mujeres supuestamente sanas. Se utilizó el ensayo cometa alcalino y la variante neutral para determinar roturas de simple hebra (DB-A), y roturas de doble hebra del ADN (DB-N), respectivamente. Resultados: Aunque no hubo diferencias entre los valores medios del daño del ADN de pacientes y controles (DB-N: p=0,43 y DB-A: p=0,13), el 41,6% de las pacientes presentó aumento de un tipo u otro de roturas del ADN y el DB-N estuvo asociado al incremento de la edad (r2 = 0,1833; r = 0,4281; p = 0,036) en este grupo. El consumo de antioxidantes pareció contribuir a un DB-A menor (p=0,006) en un grupo de pacientes, semejante al grupo control (p=0,013), respecto a las que no consumieron los suplementos. El tratamiento con tamoxifeno pareció incrementar el DB-A en las pacientes con cáncer de mama en remisión que no consumieron antioxidantes, en relación a las que si consumieron el medicamento (p=0,020) y al grupo control (p=0,033). Conclusiones: Se identificaron diferencias individuales en ambos tipos de roturas de hebra del ADN que resultan de interés médico en las pacientes estudiadas. El daño basal del ADN determinado por ensayo cometa es una herramienta potencial en el seguimiento clínico de pacientes con cáncer en remisión para determinar la presumible susceptibilidad al cáncer secundario.
 
Publisher Instituto Nacional de Cancerología
 
Date 2020-12-02
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://www.revistacancercol.org/index.php/cancer/article/view/122
10.35509/01239015.122
 
Source Revista Colombiana de Cancerología; Vol. 25 No. 1 (2021)
Revista Colombiana de Cancerología; Vol. 25 Núm. 1 (2021)
Revista Colombiana de Cancerología; v. 25 n. 1 (2021)
2346-0199
0123-9015
 
Language spa
 
Relation https://www.revistacancercol.org/index.php/cancer/article/view/122/528
/*ref*/Gröber U, Holzhauer P, Kisters Klaus, Holick MF and Adamietz IA. Micronutrients in Oncological Intervention. Nutrients 2016 Mar 12; 8(3):163; 8(163); doi:10.3390/nu8030163 2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015 Mar 1;136(5):E359-86. doi: 10.1002/ijc.29210. 3. Lynch SM and Rebbeck TR. Bridging the Gap between Biologic, Individual, and Macroenvironmental Factors in Cancer: A Multilevel Approach. Cancer Epidemiol Biomarkers Prev 2013 April; 22(4): 485–495. doi: 10.1158/1055-9965.EPI-13-0010 4. Gunasekarana V, Raj GV and Chand P. A Comprehensive Review on Clinical Applications of Comet Assay. J Clin Diagn Res 2015 Mar; 9(3): GE01–GE05. Published online 2015 Mar 1. doi: 10.7860/JCDR/2015/12062.5622 5. O'Connor MJ. Targeting the DNA Damage Response in Cancer. Mol Cell 2015 Nov 19;60(4):547-60. doi: 10.1016/j.molcel.2015.10.040. 6. Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer. 2019; 10(9): 2109-2127. doi: 10.7150/jca.30410 7. Vélez-Cruz R and Johnson DG. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int. J. Mol. Sci. 2017 Aug 16;18(8):1776; doi:10.3390/ijms18081776. 8. Grantzau T, Overgaard J. Risk of second non-breast cancer among patients treated with and without postoperative radiotherapy for primary breast cancer: A systematic review and meta-analysis of population-based studies including 522,739 patients. Radiother Oncol 2016 Dec;121(3):402-413. doi: 10.1016/j.radonc.2016.08.017 9. Molina-Montes E, Requena M, Sánchez-Cantalejo E, Fernández MF, Arroyo-Morales M, Espín J et al. Risk of second cancers cancer after a first primary breast cancer: a systematic review and meta-analysis. Gynecol Oncol. 2015 Jan;136(1):158-71. doi: 10.1016/j.ygyno.2014.10.029 10. Ren N, Atyah M, Chen WY, Zhou CH. The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications. J Transl Med. 2017 May 22;15(1):110. doi: 10.1186/s12967-017-1218-4. 11. Gamulin M, Kopjar N, Grgić M, Ramić S, Bišof V, and Garaj-Vrhovac V. Genome Damage in Oropharyngeal Cancer Patients Treated by Radiotherapy. Croat Med J. 2008 Aug;49(4):515-27. PMCID: PMC2525833 12. Sánchez-Suárez P, Ostrosky-Wegman P, Gallegos-Hernández F, Peñarroja-Flores R, Toledo-García J, Bravo JL et al. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer. Mutat Res 2008 Apr 2;640(1-2):8-15. doi: 10.1016/j.mrfmmm.2007.11.008. 13. Allione A, Pardini B, Viberti C, Oderda M, Allasia M, Gontero P et al. The prognostic value of basal DNA damage level in peripheral blood lymphocytes of patients affected by bladder cancer. Urol Oncol. 2018 May;36(5):241.e15-241.e23. doi: 10.1016/j.urolonc.2018.01.006. 14. Uriol E, Sierra M, Comendador MA, J Fra, Martínez-Camblor P, Lacave AJ et al. Long-term biomonitoring of breast cancer patients under adjuvant chemotherapy: the comet assay as a possible predictive factor. Mutagenesis 2013 Jan;28(1):39-48. doi: 10.1093/mutage/ges050. 15. Pupo-Balboa JB, Gutiérrez R, Pandolfi-Blanco A, Cásido-Rodríguez M, Valdés-Ramos L, de Armas-Santiesteban A. Daño basal del ADN en un grupo de individuos cubanos sanos mediante ensayo cometa. Acta Bioquím Clín Latinoam 2014; 48 (3): 367-73 http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572014000300010&lng=es. 16. Collins AR. The Comet Assay for DNA Damage and Repair Principles, Applications, and Limitations Mol Biotechnol 2004 Mar;26(3):249-61. doi: 10.1385/MB:26:3:249 17. Driessens N, Versteyhe S, Ghaddhab C, Burniat, A, De Deken X, Van Sande J t al. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Rel Cancer. 2009 Sep;16(3): 845–56. doi: 10.1677/ERC-09-0020. 18. Kosti O, Goldman L, Saha DT, Orden RA, Pollock AJ, Madej HL et al. DNA damage phenotype and prostate cancer risk. Mutat Res 2011 February 3; 719(1-2): 41–46. doi: 10.1016/j.mrgentox.2010.11.005 19. Azqueta A, Slyskova J, Langie SAS, O’Neill Gaivão I and Collins A. Comet assay to measure DNA repair: approach and applications. Front. Genet 2014; 5:288. doi: 10.3389/fgene.2014.00288 20. Chaisiriwong L, Wanitphakdeedecha R, Sitthinamsuwan P, Sampattavanich S, Chatsiricharoenkul S, Manuskiatti W et al. A Case-Control Study of Involvement of Oxidative DNA Damage and Alteration of Antioxidant Defense System in Patients with Basal Cell Carcinoma: Modulation by Tumor Removal. Oxid Med Cell Longev 2016;2016:5934024. doi: 10.1155/2016/5934024 21. Løhr M, Jensen A, Eriksen L, Grønbæk M, Loft S and Møller P. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells. Oncotarget 2014; 6(5):2641-26533; doi: 10.18632/oncotarget.3202 22. Garm C, Moreno-Villanueva M, Bürkle A, Petersen I, Bohr VA, Christensen K et al. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells. Aging Cell 2013 Feb;12(1):58-66. doi: 10.1111/acel.12019 23. Buchynska L, Brieieva O, Glushchenko N, Vorobyova L and Bilyk O. DNA repair deficiency in peripheral blood lymphocytes of endometrial cancer patients with a family history of cancer. BMC Cancer. 2014;14:765. doi:10.1186/1471-2407-14-765 24. Smith TR, Miller MS, Lohman KK, LD Case and Hu JJ. DNA damage and breast cancer risk Carcinogenesis. 2003;24(5):883-889. doi: 10.1093/carcin/bgg037 25. Hoeijmakers JHJ. Molecular origin of cancer. DNA Damage, Aging, and Cancer. N Engl J Med. 2009 Oct 8;361(15):1475-85. doi: 10.1056/NEJMra0804615 26. Hao Luo, Zheng Li, Yi Qing, Shi-Heng Zhang, Yu Peng, Qing Li, Dong Wang. Single Nucleotide Polymorphisms of DNA Base-excision Repair Genes (APE1, OGG1 and XRCC1) Associated with Breast Cancer Risk in a Chinese Population. Asian Pac J Cancer Prev. 2014;15(3):1133-1140 doi:10.7314/apjcp.2014.15.3.1133 27. Petkova R, Chelenkova P, Georgieva E & Chakarov S. What's Your Poison? Impact of Individual Repair Capacity on the Outcomes of Genotoxic Therapies in Cancer. Part I—Role of Individual Repair Capacity in the Constitution of Risk for Late-Onset Multifactorial Disease, Biotechnol & Biotechnol Eq. 2013; 27(6): 4208-4216. doi: 10.5504/BBEQ.2013.0097 28. Finch A, Beiner M, Lubinski J, Lynch HT, Moller P, Rosen B et al. Salpingo-oopherectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 mutation. JAMA. 2006: 296(2): 185-92 doi: 10.1001/jama.296.2.185; 29. Cavanagh H and Roger KM. The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers. Hered Cancer Cin Pract. 2015; 13(1):16. doi: 10.1186/s13053-015-0038-x.eCollection 2015 30. Locken-Castilla A, Pacheco-Pantoja EL, Rodríguez-Brito F, May-Kim Sh, López-Rivas V and Ceballos-Cruz A. Smoking index, lifestyle factors, and genomic instability assessed by single-cell gel electrophoresis: a cross-sectional study in subjects from Yucatan, Mexico. Clinical Epigenetic. 2019; 11:150 https://doi.org/10.1186/s13148-019-0745-7 31. Borrego-Soto G, Ortiz-López R and Rojas-Martínez A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol. 2015; 38(4): 420-432 doi: http://dx.doi.org/10.1590/S1415-475738420150019 32. Alhmoud JF, Woolley JF, Al Moustafa AE and Malki MI. DNA Damage/Repair Management in Cancers. Cancers. 2020; 12(1050): 22 p; doi:10.3390/cancers12041050 33. Vandevoorde C, Depuydt J, Veldeman L, De Neve W, Sebastià N, Wieme G, Baert A, De Langhe S, Philippé J, Thierens H, Vral A.In vitro cellular radiosensitivity in relationship to late normal tissue reactions in breast cancer patients: a multi-endpoint case-control study. Int J Radiat Biol. 2016 Dec;92(12):823-836. Epub 2016 Oct 17. doi: 10.1080/09553002.2016.1230238 34. Khanna A. DNA Damage in Cancer Therapeutics: A Boon or a Curse? Cancer Res. 2015 Jun 1;75(11): 2133–8. doi: 10.1158/0008-5472.CAN-14-3247 35. AIRTUM Working Group. Italian cancer figures, report 2013: Multiple tumours. Epidemiol Prev 2013 Jul-Oct;37(4-5 Suppl 1):1-152 36. Gamulin M, Kopjar N, Grgić M, Ramić S, Viculin T, Petković M et al. Cytogenetic follow-up in testicular seminoma patients exposed to adjuvant radiotherapy. Coll Antropol 2010 Jun;34(2):455-65). PMID: 20698117 37. Trenner A and Sartori AA. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front. Oncol. 2019; 9:1388. doi: 10.3389/fonc.2019.01388 38. Mallipatna A, Marino M, Singh AD. Genetics of Retinoblastoma. Asia Pac J Ophthalmol (Phila). 2016 Jul-Aug;5(4):260-4. doi: 10.1097/APO.0000000000000219. 39. Silverman BG, Lipshitz I, Keinan-Boker L. Second Primary Cancers After Primary Breast Cancer Diagnosis in Israeli Women, 1992 to 2006. J Glob Oncol 2017; 3(2): 135-142). doi: 10.1200/JGO.2016.003699. 40. Crawford S. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: a new therapeutic approach to disease progression and recurrence. Ther Adv Med Oncol 2014. 6(2): 52–68. doi: 10.1177/1758834014521111. 41. J. Robin Harris • Viktor I. Korolchuk, Editors. Biochemistry and Cell Biology of Ageing: Part I Biomedical Internet Science. Subcellular Biochemistry. Volume 90. Singapore. Springer. 2018. citado mayo 2020. Disponible en: https://doi.org/10.1007/978-981-13-2835-0 42. Dhir S, Tarasenko M, Napoli E and Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front. Psychiatry. 2019 Apr 4;10:207. doi: 10.3389/fpsyt.2019.00207 43. Sambon M, Napp A, Demelenne A, Vignisse J, Wins P, Fillet M et al. Thiamine and benfotiamine protect neuroblastoma cells against paraquat and β-amyloid toxicity by a coenzyme-independent mechanism. Heliyon. 2019 May 14;5(5): e01710. doi.org/10.1016/j.heliyon.2019.e01710 44. Suwannasom N, Kao I, Pruß A, Georgieva R and Bäumler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020. 21; 950. doi:10.3390/ijms21030950) 45. Fania L, Mazzanti C, Campione E, Candi E, Abeni D and Dellambra E- Role of Nicotinamide in Genomic Stability and Skin Cancer Chemoprevention. Int. J. Mol. Sci. 2019. 20; 5946. doi:10.3390/ijms20235946 46. Cheng SB, Lin PT, Liu HT, Peng YS, Huang SCh, and Huang YCh. Vitamin B-6 Supplementation Could Mediate Antioxidant Capacity by Reducing Plasma Homocysteine Concentration in Patients with Hepatocellular Carcinoma after Tumor Resection. BioMed Res Int. 2016;2016:7658991.doi:10.1155/ 2016/7658981 47. van de Lagemaat EE, de Groot LCPGM and van den Heuvel EGHM. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients. 2019 Feb 25 ;11(2):482. doi:10.3390/nu11020482 48. Doldo E, Costanza G, Agostinelli S, Tarquini Ch, Ferlosio A, Arcuri G et al. Vitamin A, Cancer Treatment and Prevention: The New Role of Cellular Retinol Binding Proteins. BioMed Res Int. 2015; 2015: 624627. doi.org/10.1155/2015/624627 49. Fabian CJ, Kimler BF and Hursting SD. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res. 2015;17(1):62. doi 10.1186/s13058-015-0571-6 50. Greenlee H, Gammon MD, Abrahamson PE, Gaudet MM, Terry MB, Hershman DL et al. Prevalence and predictors of antioxidant supplement use during breast cancer treatment: The Long Island Breast Cancer Study Projec. Cancer 2009 Jul 15;115(14):3271-82. doi: 10.1002/cncr.24378. 51. Caldon CE. Estrogen signaling and the DNA damage response in hormone dependent breast cancers. Front Oncol 2014 May 14;4:106. doi: 10.3389/fonc.2014.00106 52. Wilson BT, Cordell HJ. Uterine carcinosarcoma/malignant mixed Müllerian tumor incidence is increased in women with breast cancer, but independent of hormone therapy. J Gynecol Oncol 2015 Oct;26(4):249-51. doi: 10.3802/jgo.2015.26.4.249 53. Wozniak K, Kolacinska A, Blasinska-Morawiec M, Morawiec-Bajda A, Morawiec Z, Zadrozny M et al. The DNA-damaging potential of tamoxifen in breast cancer and normal cells. Arch Toxicol 2007 Jul;81(7):519-27. Epub 2007 Feb 16 PMID: 17593413 54. Bazzan AJ, Newberg AB, Cho WC and Monti DA. Diet and Nutrition in Cancer Survivorship and Palliative Care. Evid Based Complement Alternat Med 2013;2013:917647. doi: 10.1155/2013/917647 55. Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Seminars in Cancer Biology 2015; 35 S5–S24. http://dx.doi.org/10.1016/j.semcancer.2015.03.005 56. Wallace TC, Bultman S, D’Adamo Ch, Daniel CR, Debelius J, Ho E et al. Personalized Nutrition in Disrupting Cancer — Proceedings From the 2017 American College of Nutrition Annual Meeting, Journal of the American College of Nutrition. 2019. 38(1):1-14. doi: 10.1080/07315724.2018.1500499 57. Repka CP, Hayward R. Oxidative Stress and Fitness Changes in Cancer Patients after Exercise Training. Med Sci Sports Exerc 2016 Apr;48(4):607-14. doi: 10.1249/MSS.0000000000000821 58. Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E et al. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev 2016 Mar 31;3:CD008796. doi: 10.1002/14651858.CD008796.pub3
 
Rights Derechos de autor 2020 Revista Colombiana de Cancerología
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library