Milk microbiome: evaluation study on the differences among cows with a different health status classified by leukocyte pattern

Acta Fytotechnica et Zootechnica

View Publication Info
 
 
Field Value
 
Title Milk microbiome: evaluation study on the differences among cows with a different health status classified by leukocyte pattern
 
Creator Scarsella, Elisa
Cintio, Michela
Zecconi, Alfonso
Stefanon, Bruno
 
Description Submitted 2020-06-30 | Accepted 2020-07-25 | Available 2020-12-01https://doi.org/10.15414/afz.2020.23.mi-fpap.67-73Milk is considered not only a source of nutrient for the offspring but also a font of immunoregulatory compounds capable to predispose the naïve intestinal immune system of the new-born to react to the external environment. In the present study we evaluated the composition of milk microbiome from cows classified according to milk total and differential somatic cell counts. A total of 34, 13 and 13 milk samples of healthy, at risk and subclinical or chronic cows, respectively, were collected during the same milking from a local dairy herd. Through Next Generation Sequencing (NGS) of bacterial 16S rRNA gene, the differences of taxa in terms of relative abundances (RA) and alpha and beta biodiversity were analysed. The RA of several genera were statistically significant in the three groups, such as Arcanobacterium (p=0.001), Rhodococccus (p<0.05) and Rubrobacter (p<0.05), while at species level the presence of Propionibacterium granulosum, Pseudomonas alcaligenes and Prosthecobacter debontii were found. Shannon and Evenness indices computed at the genus level were not significant, while beta biodiversity showed a clear clusterization between groups. The results highlighted that milk microbiome is associated to a different cellular response at udder level, although more specific studies are needed to assess the source of bacteria species identified in milk microbial population of healthy animals.Keywords: milk microbiome; bovine; mastitis; differential cell countReferencesBOLYEN. E.; RIDEOUT. J.R.; DILLON. M.R.; BOKULICH. N.A.; ABNET. C.C.; AL-GHALITH. G.A.; ALEXANDER. H.; ALM. E.J.; ARUMUGAM, M.; ASNICAR. F.; et al. (2019). Reproducible. interactive. scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852-857.BOWEN, J. M.; MCCABE, M.S.; LISTER, S.J.; CORMICAN, P. AND DEWHURST, R.J. (2018). Evaluation of Microbial Communities Associated With the Liquid and Solid Phases of the Rumen of Cattle Offered a Diet of Perennial Ryegrass or White Clover. Frontiers in microbiology, 9, 2389.DERAKHSHANI, H.; FEHR, K.B.; SEPEHRI, S.; FRANCOZ, D.; DE BUCK, J.; BARKEMA, H.W.; PLAIZIER, J.C. AND KHAFIPOUR, E. (2018). Invited review: microbiota of the bovine udder: contributing factors and potential implications for udder health and mastitis susceptibility. J Dairy Sci 101, 10605-10625.GANDA, E.K.; GAETA, N.; SIPKA, A.; POMEROY, B.; OIKONOMOU, G.; SCHUKKEN, Y.H. AND BICALHO, R.C. (2017). Normal milk microbiome is reestablished following experimental infection with Escherichia coli independent of intramammary antibiotic treatment with a third-generation cephalosporin in bovines. Microbiome 5, 74.IVANOVA, N.; SIKORSKI, J.; SIMS, D.; BRETTIN, T.; DETTER, J.C.; HAN, C.; LAPIDUS, A.; COPELAND, A.; GLAVINA DEL RIO, T.; NOLAN, M.; CHEN, F.; LUCAS, S.; TICE, H.; CHENG, J.F.; BRUCE, D.; GOODWIN, L.; PITLUCK, S.; PATI, A.; MAVROMATIS, K.; CHEN, A.; PALANIAPPAN, K.; D'HAESELEER, P.; CHAIN, P.; BRISTOW, J.; EISEN, J.A.; MARKOWITZ, V.; HUGENHOLTZ, P.; GÖKER, M.; PUKALL, R.; KLENK, H.P. AND KYRPIDES, N.C. (2009). Complete genome sequence of Sanguibacter keddieii type strain (ST-74). Stand Genomic Sci 24, 1, 110-118.KEHRLI. M.E. AND HARP, J.A. (2001). Immunity in the mammary gland. Vet Clin North Am Food Anim Pract 17, 495-516.KEIKHA M. (2017). Williamsia spp. are emerging opportunistic bacteria. New Microbes New Infect 21, 88-89.KLINDWORTH. A.; PRUESSE. E.; SCHWEER. T.; PEPLIES. J.; QUAST. C.; HORN. M. AND GLOCKNER. F.O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1.KUEHN, J.S.; GORDEN, P.J.; MUNRO, D.; RONG, R.; DONG, Q.; PLUMMER, P.J.; WANG, C. AND PHILLIPS, G.J. (2013). Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. PLoS ONE 13, 8, e61959.LIMA, S.F.; BICALHO, M.L.DS. AND BICALHO, R.C. (2018). Evaluation of milk sample fractions for characterization of milk microbiota from healthy and clinical mastitis cows. PLoS ONE 13, e0193671.LOZUPONE, C. AND KNIGHT, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71, 8228‐8235.MACPHERSON, A.J. AND UHR, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662-1665.METZGER, S.A.; HERNANDEZ, L.L.; SUEN, G. AND RUEGG, P.L. (2018). Understanding the milk microbiota. Vet Clin North Am Food Anim Pract 34, 427-438.OIKONOMOU, G.; BICALHO, M.L.; MEIRA, E.; ROSSI, R.E.; FODITSCH, C.; MACHADO, V.S.; TEIXEIRA, A.G.; SANTISTEBAN, C.; SCHUKKEN, Y.H. AND BICALHO, R.C. (2014). Microbiota of cow's milk; distinguishing healthy, sub-clinically and clinically diseased quarters. PloS one, 9(1), e85904. https://doi.org/10.1371/journal.pone.0085904 (2014) Microbiota of Cow’s Milk: Distinguishing Healthy, Sub-Clinically and Clinically Diseased Quarters. PLoS ONE 9, e85904.OIKONOMOU, G.; MACHADO, V.S.; SANTISTEBAN, C.; SCHUKKEN, Y.H. AND BICALHO, R.C. (2012). Microbial Diversity of Bovine Mastitic Milk as Described by Pyrosequencing of Metagenomic 16s DNA. PLoS ONE 7, e47671.RODRÍGUEZ, J.M. (2014). The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 5, 779-784.ROUX, M.E.; MCWILLIAMS, M.; PHILLIPS-QUAGLIATA, J.M.; WEISZ-CARRINGTON, P. AND LAMM, M.E. (1977). Origin of IgA-secreting plasma cells in the mammary gland. Journal of Experimental Medicine 146, 1311-1322.STOCCO, G.; SUMMER, A.; CIPOLAT-GOTET, C.; ZANINI, L.; VAIRANI, D.; DADOUSIS, D. AND A. ZECCONI (2020). Differential cell count as a novel indicator of milk quality in dairy cows. Animals 10, 1-14.TAPONEN, S.; MCGUINNESS, D.; HIITIÖ. H.; SIMOJOKI, H.; ZADOKS, R. AND PYÖRÄLÄ, S. (2019). Bovine milk microbiome: a more complex issue than expected. Vet Res 50, 44.TOLLE, A. (1980). The microflora of the udder. Factors influencing the bacteriological quality of raw milk. International Dairy Federation Bulletin Document 120, 4.VANGROENWEGHE, F.; DOSOGNE, H.; MEHRZAD, J. AND BURVENICH, C. (2001). Effect of milk sampling techniques on milk composition, bacterial contamination, viability and functions of resident cells in milk. Vet Res 32, 565-579.VERDIER-METZ, I.; GAGNE, G.; BORNES, S.; MONSALLIER, F.; VEISSEIRE, P.; DELBÈS-PAUS, C. AND MONTEL, M.C. (2012). Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl Environ Microbiol 78,326-333.WEON, H.Y.; LEE, C.M.; HONG, S.B.; KIM, B.Y.; YOO, S.H.; KWON, S.W. AND GO, S.J. (2008). Kaistia soli sp. nov., isolated from a wetland in Korea. Int J Syst Evol Microbiol 58, 1522-1524.YOUNG, W.; HINE, B.C.; WALLACE, O.A.; CALLAGHAN, M. AND BIBILONI, R. (2015). Transfer of intestinal bacterial components to mammary secretions in the cow. PeerJ 3, e888.ZECCONI, A. AND PICCININI R. (2002). Intramammary infections: epidemiology and diagnosis. XXII World Buiatric Congress - Recent developments and perspectives in bovine medicine. HannoverZECCONI, A.; DELL’ORCO, F.; VAIRANI, D.; RIZZI, N.; CIPOLLA, M. AND ZANINI, L. (2020 a). Differential cell count as a marker for changes of milk composition in cows very low somatic cell counts. Animals 10, 1-14.ZECCONI, A.; ZANINI, L.; CIPOLLA, M.; STEFANON, B. (2020 b). Factors Affecting the Patterns of Total Amount and Proportions of Leukocytes in Bovine Milk. Animals 10, 992.ZECCONI, A.; HAMANN, J.; BRONZO, V.; MORONI, P.; GIOVANNINI, G. AND PICCININI, R. (2000). Relationship between teat tissue immune defences and intramammary infections. Adv Exp Med and Biol 480, 287-293.ZECCONI, A.; VAIRANI, D.; CIPOLLA, M.; RIZZI, N. AND ZANINI, L. (2019 a). Assessment of subclinical mastitis diagnostic accuracy by differential cell count in individual cow milk, Italian Journal of Animal Science 18, 460-465.ZECCONI, A.; SESANA, G.; VAIRANI, D.; CIPOLLA, M.; RIZZI, N. AND ZANINI, L. (2019 b). Somatic cell count as a decision tool for selective dry cow therapy in Italy. Italian Journal of Animal Science 18, 435-440.   
 
Publisher Acta Fytotechnica et Zootechnica
 
Contributor
 
Date 2020-11-19
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

 
Format application/pdf
 
Identifier http://www.acta.fapz.uniag.sk/journal/index.php/on_line/article/view/671
 
Source Acta Fytotechnica et Zootechnica; Vol 23 (2020): Future Perspectives in Animal Production
1336-9245
1336-9245
 
Language eng
 
Relation http://www.acta.fapz.uniag.sk/journal/index.php/on_line/article/view/671/pdf
 
Rights Copyright (c) 2020 Acta Fytotechnica et Zootechnica
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library