Homocysteine and neurocognitive disorders. A light at the end of the tunnel?

Medicina y Laboratorio

View Publication Info
 
 
Field Value
 
Title Homocysteine and neurocognitive disorders. A light at the end of the tunnel?
Homocisteína y trastornos neurocognitivos. ¿Una luz al final del túnel?
 
Creator Vizcaíno Salazar, Gilberto J
 
Subject Homocysteine
methylenetetrahydrofolate reductase
folic acid
vitamin B12
vitamin B6
cognitive dysfunction
dementia
Alzheimer’s disease
homocisteína
metilentetrahidrofolato reductasa
ácido fólico
vitamina B12
vitamina B6
disfunción cognitiva
demencia
enfermedad de Alzheimer.
 
Description Cognitive impairment is one of the processes that accompany aging and may depend on nutritional, genetic or environmental factors. The identification of modifiable risk factors provides a crucial approach for the prevention of cognitive decline and neurocognitive disorders. One of the risk factors is the high concentration of plasma homocysteine and it has been associated to histopathological changes in senile dementia and Alzheimer ́s disease. Clinical trials about this association has shown inconsistent and contradictory results. The purpose of this review is to describe the possible interaction of three factors related with cognitive impairment: a) nutritional factors (homocysteine, folic acid and vitamin B12), b) the use of mental tests such as the Mini Mental State Examination for the diagnosis of cognitive dys- function, and c) the presence of polymorphic genetic variants of the methylenete- trahydrofolate reductase enzyme. A direct consequence of this triple relationship is the treatment with folic acid and vitamin B12, which decrease high concentrations of plasma homocysteine, with a potential for improvement of the clinical symptoms of cognitive decline, and possibly a delay in the progression towards neurocognitive disorder. Public health policies focused on mental health of older adults can identify people with initial cognitive dysfunction through health promotion and preventive measures, where it can be possible to administer B vitamins in order to reduce or minimize the progression of cognitive decline, that could lead to mental disturbances such as neurocognitive disorders.
El deterioro cognitivo es uno de los procesos que acompañan al envejecimiento y puede depender de factores nutricionales, genéticos o ambientales. La identificación de factores de riesgo modificables proporciona un enfoque esencial para la prevención de dicho deterioro y de los trastornos neurocognitivos. Uno de los factores de riesgo involucrados es la elevada concentración de homocisteína plasmática, la cual se ha relacionado con hallazgos histopatológicos en demencia senil y enfermedad de Alzheimer. Los diferentes estudios sobre esta asociación revelan inconsistencia o contradicción en los resultados. El propósito de esta revisión es relacionar la posible interacción de tres factores en la instalación y progresión del deterioro neurocognitivo: a) factores de tipo nutricional (homocisteína, ácido fólico y vitamina B12), b) la utilización de pruebas para el diagnóstico de disfunción o deterioro cognitivo como el Mini Examen del Estado Mental, y c) la presencia de variantes genéticas polimórficas de la enzima metilentetrahidrofolato reductasa. Una consecuencia directa de esta triple relación es que el tratamiento con ácido fólico y vitamina B12 logra disminuir las elevadas concentraciones de homocisteína plasmática, asumiendo que una mejoría en los síntomas clínicos de deterioro cognitivo puede retrasar los cambios relacionados con progresión a estados demenciales. La intervención temprana mediante políticas de promoción y prevención de la salud mental puede ser efectiva si se comienza con la administración de ácido fólico y vitamina B12 en los estadios iniciales de la alteración cognitiva, logrando así reducir sus funestas consecuencias. Las políticas de salud pública centradas en la salud mental de ancianos pueden identificar a las personas con disfunción cognitiva inicial a través de la promoción de la salud y medidas preventivas; en esta etapa puede ser posible la administración de vitaminas B para reducir o minimizar la progresión del deterioro cognitivo, que podría conducir a trastornos neurocognitivos como la demencia y la enfermedad de Alzheimer.
 
Publisher EDIMECO S.A.
 
Date 2020-03-03
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://medicinaylaboratorio.com/index.php/myl/article/view/210
10.36384/01232576.210
 
Source Medicina & Laboratorio; Vol. 24 No. 2 (2020); 111-129
Medicina y Laboratorio; Vol. 24 Núm. 2 (2020); 111-129
2500-7106
0123-2576
 
Language spa
 
Relation https://medicinaylaboratorio.com/index.php/myl/article/view/210/191
/*ref*/Selhub J, Bagley LC, Miller J, Rosenberg IH. B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr 2000;71:614S-620S. https://doi.org/10.1093/ajcn/71.2.614s 2. Smith AD. The worldwide challenge of the dementias: a role for B vitamins and homocysteine? Food Nutr Bull 2008;29:S143-172. https://doi.org/10.1177/15648265080292S119 3. McCaddon A. Homocysteine and cognition- A historical perspective. J Alzheimers Dis 2006;9:361-380. https://doi.org/10.3233/JAD-2006-9402 4. Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr 2016;36:211-239. https://doi.org/10.1146/annurev-nutr-071715-050947 5. McCaddon A, Davies G, Hudson P, Tandy S, Cattell H. Total serum homocysteine in senile dementia of Alzheimer type. Int J Geriatr Psychiatry 1998;13:235-239. https://doi.org/10.1002/(SICI)1099-1166(199804)13:4<235::AID-GPS761>3.0.CO;2-8 6. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998;55:1449-1455. https://doi.org/10.1001/archneur.55.11.1449 7. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004;50:3-32. https://doi.org/10.1373/clinchem.2003.021634 8. Diaz-Arrastia R. Hyperhomocysteinemia: a new risk factor for Alzheimer's disease? Arch Neurol 1998;55:1407-1408. https://doi.org/10.1001/archneur.55.11.1407 9. Bolander-Gouaille C. The homocysteine metabolism. Focus on homocysteine and the vitamins involved in its metabolism. 2nd ed. France: Springer; 2002. p. 20-31. https://doi.org/10.1007/978-2-8178-0845-1_3 10. Vizcaíno-Salazar GJ, Vizcaíno-Carruyo JC. Homocisteína: bases genéticas y sus implicaciones cardiovasculares y cognitivas como factor de riesgo. Invest Clin 2017;58:406-436. 11. Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med 2009;60:39-54. https://doi.org/10.1146/annu-rev.med.60.041807.123308 12. Mudd SH, Finkelstein JD, Refsum H, Ueland PM, Malinow MR, Lentz SR, et al. Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol 2000;20:1704-1706. https://doi.org/10.1161/01.ATV.20.7.1704 13. Price BR, Wilcock DM, Weekman EM. Hyperhomocysteinemia as a risk factor for vascular contributions to cognitive impairment and dementia. Front Aging Neurosci 2018;10:350. https://doi.org/10.3389/fna-gi.2018.00350 14. Moretti R, Caruso P. The controversial role of homocysteine in neurology: From labs to clinical practice. Int J Mol Sci 2019;20. https://doi.org/10.3390/ijms20010231 15. Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr 1992;12:279-298. https://doi.org/10.1146/annurev.nu.12.070192.001431 16. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLOS ONE 2010;5:e12244. https://doi.org/10.1371/journal.pone.0012244 17. Pfeiffer CM, Caudill SP, Gunter EW, Osterloh J, Sampson EJ. Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999-2000. Am J Clin Nutr 2005;82:442-450. https://doi.org/10.1093/ajcn.82.2.442 18. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015. The Global Impact of Dementia. An analysis of prevalence, incidence, cost and trends. 2015. Acceso 15 de marzo del 2019. Disponible en https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf 19. Pfeiffer CM, Osterloh JD, Kennedy-Stephenson J, Picciano MF, Yetley EA, Rader JI, et al. Trends in circulating concentrations of total homocysteine among US adolescents and adults: Findings from the 1991– 1994 and 1999–2004 National Health and Nutrition Examination Surveys. Clin Chem 2008;54:801-813. https://doi.org/10.1373/clinchem.2007.100214 20. Centers for Disease Control and Prevention.Second National Report on Biochemical Indicators of Diet and Nutrition in the U.S. Population. 2012. Acceso 20 de febrero del 2019. Disponible en https://www.cdc.gov/nutritionreport/pdf/Nutrition_Book_complete508_final.pdf 21. Hin H, Clarke R, Sherliker P, Atoyebi W, Emmens K, Birks J, et al. Clinical relevance of low serum vitamin B12 concentrations in older people: the Banbury B12 study. Age Ageing 2006;35:416- 422. https://doi.org/10.1093/ageing/afl033 22. Hopkins SM, Gibney MJ, Nugent AP, McNulty H, Molloy AM, Scott JM, et al. Impact of voluntary fortification and supplement use on dietary intakes and biomarker status of folate and vitamin B-12 in Irish adults. Am J Clin Nutr 2015;101:1163-1172. https://doi.org/10.3945/ajcn.115.107151 23. Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 2015;58:1-10. https://doi.org/10.1016/j.ejmg.2014.10.004 24. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111-113. https://doi.org/10.1038/ng0595-111 25. Salazar-Sanchez L, Schuster W, Vizcaino G, Perez-Requejo JL, Jimenez G, Grimm R, et al. The prevalence of three molecular risk factors (G20210A, C677T, Factor V Leiden) in various ethnic groups in Costa Rica and Venezuela. Thromb Haemost 1999;82:275. 26. Vizcaino G, Diez-Ewald M, Herrmann FH, Schuster G, Perez-Requejo JL. Relationships between homocysteine, folate and vitamin B12 levels with the methylenetetrahydrofolate reductase polymorphism, in Indians from Western Venezuela. Thromb Haemost 2001;85:186- 187. https://doi.org/10.1055/s-0037-1612928 27. Vizcaíno G, Diez-Ewald M, H Herrmann F, Schuster G, Guerra E, Arteaga-Vizcaíno M. La homocisteinemia y su relación con el polimorfismo de la metilentetrahidrofolato reductasa en varios grupos étnicos del occidente de Venezuela. Invest Clin 2005;46:347-355. 28. Douaud G, Refsum H, de Jager CA, Jacoby R, Nichols TE, Smith SM, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A 2013;110:9523-9528. https://doi.org/10.1073/pnas.1301816110 29. Roussotte FF, Hua X, Narr KL, Small GW, Thompson PM, the Alzheimer’s Disease Neuroimaging I. The C677T variant in MTHFR modulates associations between bra- in integrity, mood, and cognitive functioning in old age. Biol Psychiatry Cogn Neurosci Neuroimaging 2017;2:280-288. https://doi.org/10.1016/j.bpsc.2016.09.005 30. de Lau LM, Smith AD, Refsum H, Johnston C, Breteler MM. Plasma vitamin B12 status and cerebral white-matter lesions. J Neurol Neurosurg Psychiatry 2009;80:149-157. https://doi.org/10.1136/jnnp.2008.149286 31. Peng Q, Lao X, Huang X, Qin X, Li S, Zeng Z. The MTHFR C677T polymorphism contributes to increased risk of Alzheimer’s disease: evidence-based on 40 case-control studies. Neurosci Lett 2015;586:36-42. https://doi.org/10.1016/j.neulet.2014.11.049 32. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991;324:1149-1155. https://doi.org/10.1056/NEJM199104253241701 33. Veeranna V, Zalawadiya SK, Niraj A, Pradhan J, Ference B, Burack RC, et al. Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol 2011;58:1025-1033. https://doi.org/10.1016/j.jacc.2011.05.028 34. Rosenberg IH, Miller JW. Nutritional factors in physical and cognitive functions of elderly people. Am J Clin Nutr 1992;55:1237S-1243S. https://doi.org/10.1093/ajcn/55.6.1237S 35. Hutto BR. Folate and cobalamin in psychiatric illness. Compr Psychiatry 1997;38:305-314. https://doi.org/10.1016/S0010-440X(97)90925-1 36. Selhub J, Morris MS, Jacques PF, Rosenberg IH. Folate-vitamin B-12 interaction in relation to cognitive impairment, anemia, and biochemical indicators of vitamin B-12 deficiency. Am J Clin Nutr 2009;89:702S-706S. https://doi.org/10.3945/ajcn.2008.26947C 37. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998;49:31-62. https://doi.org/10.1146/annurev.med.49.1.31 38. Ekabe CJ, Kehbila J, Abanda MH, Kadia BM, Sama C-B, Monekosso GL. Vitamin B12 deficiency neuropathy; a rare diagnosis in young adults: a case report. BMC Research Notes 2017;10:72. https://doi.org/10.1186/s13104-017-2393-3 39. Nilsson K, Gustafson L, Faldt R, Anders- son A, Brattstrom L, Lindgren A, et al. Hyperhomocysteinemia common finding in a psychogeriatric population. Eur J Clin Invest 1996;26:853-859. https://doi.org/10.1111/j.1365-2362.1996.tb02129.x 40. de Lau LM, Refsum H, Smith AD, Johnston C, Breteler MM. Plasma folate concentration and cognitive performance: Rotterdam Scan Study. Am J Clin Nutr 2007;86:728-734. https://doi.org/10.1093/ajcn/86.3.728 41. Vry MS, Haerter K, Kastrup O, Gizewski E, Frings M, Maschke M. Vitamine-B12-deficiency causing isolated and partially reversible leukoencephalopathy. J Neurol 2005;252:980-982. https://doi.org/10.1007/s00415-005-0698-y 42. Hainsworth AH, Yeo NE, Weekman EM, Wilcock DM. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta 2016;1862:1008-1017. https://doi.org/10.1016/j.bbadis.2015.11.015 43.Lai WK, Kan MY. Homocysteine induced endothelial dysfunction. Ann Nutr Metab 2015;67:1-12. https://doi.org/10.1159/000437098 44.Selley ML. Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer’s disease. Neurobiol Aging 2003;24:903-907. https://doi.org/10.1016/S0197-4580(03)00007-1 45.Toda N, Okamura T. Cerebral blood flow regulation by nitric oxide in Alzheimer’s disease. J Alzheimers Dis 2012;32:569-578. https://doi.org/10.3233/JAD-2012-120670 46.Troen AM, Shea-Budgell M, Shukitt-Hale B, Smith DE, Selhub J, Rosenberg IH. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. ProcNatl Acad Sci USA 2008;105:12474-12479. https://doi.org/10.1073/pnas.0805350105 47. DeLong CJ, Shen YJ, Thomas MJ, Cui Z. Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem 1999;274:29683-29688. https://doi.org/10.1074/jbc.274.42.29683 48. Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015;1597:220-246. https://doi.org/10.1016/j.brainres.2014.11.059 49. Yuki D, Sugiura Y, Zaima N, Akatsu H, Takei S, Yao I, et al. DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer’s disease. Sci Rep 2014;4:7130. https://doi.org/10.1038/srep07130 50. Astarita G, Jung KM, Berchtold NC, Nguyen VQ, Gillen DL, Head E, et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One 2010;5:e12538. https://doi.org/10.1371/journal.pone.0012538 51. Whiley L, Sen A, Heaton J, Proitsi P, Garcia-Gomez D, Leung R, et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol Aging 2014;35:271-278. https://doi.org/10.1016/j.neurobiolaging.2013.08.001 52. Cheng Y, Jin Y, Unverzagt FW, Su L, Yang L, Ma F, et al. The relationship between cholesterol and cognitive function is homocysteine dependent. Clin Interv Aging 2014;9:1823-1829. https://doi.org/10.2147/CIA.S64766 53. Suárez-García I, Gómez-Cerezo JF, Ríos-Blanco JJ, Barbado-Hernández FJ, Vázquez-Rodríguez JJ. La homocisteína: ¿El factor de riesgo cardiovascular del próximo milenio? An Med Interna 2001;18:53-59. https://doi.org/10.4321/S0212-71992001000400010 54. Clarke R, Bennett D, Parish S, Lewington S, Skeaff M, Eussen SJ, et al. Effects of homocysteine-lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr 2014;100:657-666. https://doi.org/10.3945/ajcn.113.076349 55. Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, et al. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis 2018;62:561-570. https://doi.org/10.3233/JAD-171042 56. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet 2006;367:1262-1270. https://doi.org/10.1016/S0140-6736(06)68542-5 57. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005;366:2112-2117. https://doi.org/10.1016/S0140-6736(05)67889-0 58. Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 2004;80:114-122. https://doi.org/10.1093/ajcn/80.1.114 59. Clarke R. B-vitamins and prevention of dementia. Proc Nutr Soc 2008;67:75-81. https://doi.org/10.1017/S0029665108006046 60. Clarke R, Birks J, Nexo E, Ueland PM, Schneede J, Scott J, et al. Low vitamin B-12 status and risk of cognitive decline in older adults. Am J Clin Nutr 2007;86:1384-1391. https://doi.org/10.1093/ajcn/86.5.1384 61. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002;346:476- 483. https://doi.org/10.1056/NEJMoa011613 62. Kivipelto M, Annerbo S, Hultdin J, Backman L, Viitanen M, Fratiglioni L, et al. Homocysteine and holotranscobalamin and the risk of dementia and Alzheimer's disease: a prospective study. Eur J Neurol 2009;16:808-813. https://doi.org/10.1111/j.1468-1331.2009.02590.x 63. Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology 1991;41:1006-1009. https://doi.org/10.1212/WNL.41.7.1006 64. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, et al. Mild cognitive impairment represents early-stage Alzheimer's disease. Arch Neurol 2001;58:397-405. https://doi.org/10.1001/archneur.58.3.397 65. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001;58:1985-1992. https://doi.org/10.1001/archneur.58.12.1985 66. Bowen J, Teri L, Kukull W, McCormick W, Mc- Curry SM, Larson EB. Progression to dementia in patients with isolated memory loss. Lancet 1997;349:763-765. https://doi.org/10.1016/S0140-6736(96)08256-6. 67. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303-308. https://doi.org/10.1001/archneur.56.3.303 68. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56:1133-1142. https://doi.org/10.1212/WNL.56.9.1133 69. de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry 2012;27:592- 600. https://doi.org/10.1002/gps.2758 70. Moustafa AA, Hewedi DH, Eissa AM, Myers CE, Sadek HA. The relationship between associative learning, transfer generalization, and homocysteine levels in mild cognitive impairment. PLoS One 2012;7:e46496. https://doi.org/10.1371/journal.pone.0046496 71. Duthie SJ, Whalley LJ, Collins AR, Leaper S, Berger K, Deary IJ. Homocysteine, B vitamin status, and cognitive function in the elderly. Am J Clin Nutr 2002;75:908-913. https://doi.org/10.1093/ajcn/75.5.908 72. Robbins MA, Elias MF, Budge MM, Brennan SL, Elias PK. Homocysteine, type 2 diabetes mellitus, and cognitive performance: The Maine-Syracuse Study. Clin Chem Lab Med 2005;43:1101-1106. https://doi.org/10.1515/CCLM.2005.192 73. Ravaglia G, Forti P, Maioli F, Muscari A, Sacchetti L, Arnone G, et al. Homocysteine and cognitive function in healthy elderly community dwellers in Italy. Am J Clin Nutr 2003;77:668- 673. https://doi.org/10.1093/ajcn/77.3.668 74.Hooshmand B, Solomon A, Kareholt I, Rusanen M, Hanninen T, Leiviska J, et al. Associations between serum homocysteine, holotranscobalamin, folate and cognition in the elderly: a longitudinal study. J Intern Med 2012;271:204-212. https://doi.org/10.1111/j.1365-2796.2011.02484.x 75. Teunissen CE, Blom AH, Van Boxtel MP, Bosma H, de Bruijn C, Jolles J, et al. Homocysteine: a marker for cognitive performance? A longitudinal follow-up study. J Nutr Health Aging 2003;7:153-159. 76. Chacon IJ, Molero AE, Pino-Ramirez G, Luchsinger JA, Lee JH, Maestre GE. Risk of dementia associated with elevated plasma homocysteine in a Latin American population. Int J Alzheimers Dis 2009;2009. https://doi.org/10.4061/2009/632489 77. Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 2014;14:643. https://doi.org/10.1186/1471-2458-14-643 78. Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 2006;136:1731S-1740S. https://doi.org/10.1093/jn/136.6.1731S 79.Rosenberg IH, Rosenberg LE. The implications of genetic diversity for nutrient requirements: the case of folate. Nutrition Reviews 1998;56:S47-S53. https://doi.org/10.1111/j.1753-4887.1998.tb01687.x 80. Oulhaj A, Jerneren F, Refsum H, Smith AD, de Jager CA. Omega-3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment. J Alzheimers Dis 2016;50:547-557. https://doi.org/10.3233/JAD-150777 81.Jerneren F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain omega-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr 2015;102:215-221. https://doi.org/10.3945/ajcn.114.103283 82. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 2010;5:e12244. https://doi.org/10.1371/journal.pone.0012244 83. Clarke R, Harrison G, Richards S, Vital Trial Collaborative G. Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. J Intern Med 2003;254:67-75. https://doi.org/10.1046/j.1365-2796.2003.01154.x 84. Ford AH, Flicker L, Alfonso H, Thomas J, Clarnette R, Martins R, et al. Vitamins B(12), B(6), and folic acid for cognition in older men. Neurology 2010;75:1540-1547. https://doi.org/10.1212/WNL.0b013e3181f962c4 85. Ford AH, Almeida OP. Effect of homocysteine-lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. J Alzheimers Dis 2012;29:133-149. https://doi.org/10.3233/JAD-2012-111739 86. Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med 2010;123:522-527 e522. https://doi.org/10.1016/j.amjmed.2010.01.017 87. Ansari Z. Homocysteine and mild cognitive impairment: are these the tools for early intervention in the dementia spectrum? J Nutr Health Aging 2016;20:155-160. https://doi.org/10.1007/s12603-015-0576-y 88. Morris MS. The role of B vitamins in preventing and treating cognitive impairment and decline. Adv Nutr 2012;3:801-812. https://doi.org/10.3945/an.112.002535 89. Schulz RJ. Homocysteine as a biomarker for cognitive dysfunction in the elderly. Curr Opin Clin Nutr Metab Care 2007;10:718-723. https://doi.org/10.1097/MCO.0b013e3282f0cfe3 90. Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimers Dis 2006;9:393-398. https://doi.org/10.3233/JAD-2006-9404 91. Cacciapuoti F. Lowering homocysteine levels with folic acid and B-vitamins do not reduce early atherosclerosis, but could interfere with cognitive decline and Alzheimer’s disease. J Thromb Thrombolysis 2013;36:258-262. https://doi.org/10.1007/s11239-012-0856-x 92. Zhang DM, Ye JX, Mu JS, Cui XP. Efficacy of vitamin B supplementation on cognition in elderly patients With cognitive-related diseases. J Geriatr Psychiatry Neurol 2017;30:50-59. https://doi.org/10.1177/0891988716673466 93. Setien-Suero E, Suarez-Pinilla M, Suarez- Pinilla P, Crespo-Facorro B, Ayesa-Arriola R. Homocysteine and cognition: A systematic review of 111 studies. Neurosci Biobehav Rev 2016;69:280-298. https://doi.org/10.1016/j.neubiorev.2016.08.014 94. Malouf R, Grimley Evans J. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev 2008:CD004514. https://doi.org/10.1002/14651858.CD004514.pub2 95. Van Dam F, Van Gool WA. Hyperhomocysteinemia and Alzheimer’s disease: A systematic review. Arch Gerontol Geriatr 2009;48:425-430. https://doi.org/10.1016/j.archger.2008.03.009 96. Zhou F, Chen S. Hyperhomocysteinemia and risk of incident cognitive outcomes: An updated dose-response meta-analysis of prospective cohort studies. Ageing Res Rev 2019;51:55-66. https://doi.org/10.1016/j.arr.2019.02.006 97. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double-blind, controlled trial. Lancet 2007;369:208-216. https://doi.org/10.1016/S0140-6736(07)60109-3 98. Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, van Dyck CH, Weiner MF, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer's disease: a randomized controlled trial. JAMA 2008;300:1774-1783. https://doi.org/10.1001/jama.300.15.1774
 
Rights Derechos de autor 2020 Medicina&Laboratorio
https://creativecommons.org/licenses/by-nc-nd/4.0/
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library