Analisis Data Citra Landsat 8 OLI Sebagai Indeks Prediksi Kekeringan Menggunakan Machine Learning di Wilayah Kabupaten Boyolali dan Purworejo

Indonesian Journal of Computing and Modeling

View Publication Info
 
 
Field Value
 
Title Analisis Data Citra Landsat 8 OLI Sebagai Indeks Prediksi Kekeringan Menggunakan Machine Learning di Wilayah Kabupaten Boyolali dan Purworejo
 
Creator Christianto, Yansen Bagas
Prasetyo, Sri Yulianto Joko
Hartomo, Kristoko Dwi
 
Description Abstrak
Bencana kekeringan merupakan salah satu bencana yang tidak dapat di hindari lagi keberadaannya. Berdasarkan data dari tahun 1815 sampai tahun 2015 telah terjadi 382 kejadian. Berdasarkan kajian BNPB Kabupaten Boyolali dan Kabupaten Purworejo memiliki resiko tinggi terpapar bencana kekeringan. Untuk itu perlu adanya informasi wilayah resiko bencana kekeringan. Penggunaan data citra satelit Landsat 8 OLI sebagai media informasi vegetasi dan pendekatan Machine Learning untuk menganalisa data ekstraksi pada citra satelit berupa indeks vegetasi. Indeks vegetasi yang di gunakan yaitu NDVI, VCI, VHI, dan TCI dengan implementasi metode XGBoost dan Random Forest untuk mendapatkan hasil prediksi. Hasil yang diperoleh dengan menggunakan perhitungan metode XGBoost ada total 9 kecamatan yang diprediksi terkena bencana kekeringan sangat parah, dan 9 kecamatan dengan metode Random Forest terindikasi kekeringan sangat parah. metode XGBoost memiliki nilai akurasi 0.8286 dan nilai kappa 0.6477 dan metode Random Forest memiliki nilai akurasi 0.6857 dan Nilai Kappa 0.3699. dimana semakin tinggi nilai akurasi dan kappa semakin tepat hasil prediksi yang dilakukan.
 
Publisher Pusat Studi Sistem Informasi dan Pemodelan Mitigasi Tropika
 
Date 2019-12-11
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
 
Format application/pdf
 
Identifier https://ejournal.uksw.edu/icm/article/view/2954
 
Source Indonesian Journal of Computing and Modeling; Vol 2 No 2 (2019); 25-36
2598-9421
 
Language eng
 
Relation https://ejournal.uksw.edu/icm/article/view/2954/1333
 
Rights Copyright (c) 2019 Indonesian Journal of Computing and Modeling
http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library