Rensch’s rule is broken in Cervidae

Pesquisa e Ensino em Ciências Exatas e da Natureza

View Publication Info
 
 
Field Value
 
Title Rensch’s rule is broken in Cervidae
 
Creator Amado, Talita Ferreira
Bidau, Claudio Juan
Zurano, Juan Pablo
Raimondi, Vanina
Costa, Gabriel
Martinez, Pablo Ariel
 
Description Resumo: A diferença de tamanho corporal entre machos e fêmeas é conhecida como dimorfismo sexual de tamanho (DST). O surgimento do DST é atribuído na maioria das vezes a processos de seleção sexual, entretanto a seleção natural também pode afetar o DST. Tem se observado em diversos grupos que a intensidade do DST está associada com o tamanho corporal das espécies, padrão conhecido como Regra de Rensch. Nós testamos a regra de Rensch na família Cervidae, um grupo com forte dimorfismo sexual. Analisamos o DST de 35 espécies utilizando análises de regressão tipo II (eixo principal reduzido) filogenética (RMA). Ao analisar a relação entre o tamanho dos machos vs o tamanho das fêmeas observamos que o DST se modifica isometricamente com o aumento do tamanho corporal (RMA = 1.05, p = 0.18). Estes resultados evidenciam que a regra de Rensch não se cumpre nos membros da família Cervidae. Na última década, diversos estudos tem mostrado grupos taxonômicos que não seguem a regra de Rensch. Dado que o tamanho corporal está associado com diversas características ecológicas das espécies, é possível que a associação do tamanho corporal com o DST não seja sempre um efeito causal nos grupos que seguem a Regra de Rensch.Palavras chave: Dimorfismo sexual de tamanho, mamíferos, RMA filogenético, seleção sexual, tamanho corporal.
 
Publisher Unidade Acadêmica de Ciências Exatas e da Natureza/CFP/UFCG
 
Contributor
 
Date 2019-10-03
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

 
Format application/pdf
 
Identifier http://revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1259
10.29215/pecen.v3i2.1259
 
Source Pesquisa e Ensino em Ciências Exatas e da Natureza; v. 3, n. 2 (2019): Pesquisa e Ensino em Ciências Exatas e da Natureza
2526-8236
10.29215/pecen.v3i2
 
Language por
 
Relation http://revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1259/501
/*ref*/Abouheif E. & Fairbairn D.J. (1997) A Comparative Analysis of Allometry for sexual Size Dimorphism: Assessinf Rensch’s Rule. The American Naturalist, 149(3): 540–562. DOI: 10.1086/286004
/*ref*/Andersson M. (1994) Sexual Selection. Princeton: University Press. 624 p.
/*ref*/Barrio J. (2010) TARUKA Hippocamelus antisensis (d’Orbigny 1834) (p. 77–88). In: Duarte J.M.B. & González S. (Eds). Neotropical Cervidology: Biology and medicine of Latin American deer. Jaboticabal, Brazil: Funep; Gland, Switzerland: IUCN. 393 p.
/*ref*/Blanckenhorn W.U., Dixon A.F.G., Fairbairn D.J., Foellmer M.W., Gibert P., van der Linde K., Meier R., Nylin S., Pitnick S., Schoff C., Signorelli M., Teder T. & Wiklund C. (2007) Proximate Causes of Rensch’s Rule: Does Sexual Size Dimorphism in Arthropods Result from Sex Differences in Development Time? The American Naturalist, 169(2): 245–257. DOI: 10.1086/510597
/*ref*/Bidau C.J. & Martinez P.A. (2017) Cats and dogs cross the line: domestic breeds follow Rensch’s rule, their wild relatives do not. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding, 21(4): 443–451. DOI: 10.18699/VJ17.263 Clutton-Brock T., Harvey P. & Rudder B. (1977) Sexual dimorphism, socionomic, sex ratio and body weight in primates. Nature, 269: 797–800. DOI: 10.1038/269797a0
/*ref*/Colwell R.K. (2000) Rensch’s Rule Crosses the Line: Convergent Allometry of Sexual Size Dimorphism in Hummingbirds and Flower Mites. The American Naturalist, 156(5): 495–510. DOI: 10.1086/303406
/*ref*/Dale J., Dunn P.O., Figuerola J., Lislevand T., Székely T. & Whittingham L.A. (2007) Sexual selection explains Rensch's rule of allometry for sexual size dimorphism. Proceedings of the Royal Society of London B: Biological Sciences, 274: 2971–2979. DOI: 10.1098/rspb.2007.1043
/*ref*/Darwin C. (1859) On the Origin of Species by Means of Natural Selection. London: John Murray. 502 p.
/*ref*/Darwin C. (1871) The Descent of Man and Selection in Relation to Sex. London: John Murray. 475 p.
/*ref*/Diniz‐Filho J.A.F., Bini L.M., Rodriguez M.A., Rangel T.F.L. & Hawkins B.A. (2007) Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 30(4): 598–608. DOI: 10.1111/j.0906-7590.2007.04988.x
/*ref*/Emlen D.J., Marangelo J., Ball B. & Cunningham C.W. (2005) Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution, 59(5): 1060–1084. DOI: 10.1554/04-642
/*ref*/Fairbairn D.J. (1997) Allometry for Sexual Size Dimorphism : Pattern and Process in the Coevolution of Body Size in Males and Females. Annual Review of Ecology and Systematic, 28: 659–687. DOI: 10.1146/annurev.ecolsys.28.1.659
/*ref*/Fairbairn D.J. (2007) Introduction: the enigma of sexual size dimorphism (p. 27–37). In: Fairbairn D.J., Blanckenhorn W.U. & Székely T. (Eds). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p. DOI: 10.1093/acprof:oso/9780199208784.003.0001
/*ref*/Fairbairn D.J. (2013) Odd Couples: Extraordinary Differences between the Sexes in the Animal Kingdom. Princenton: Princenton University Press. 312 p.
/*ref*/Fairbairn D.J., Blanckenhorn W.U. & Székely T. (2007) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p. DOI: 10.1093/acprof:oso/9780199208784.001.0001
/*ref*/Felsenstein J. (1985) Phylogenies and the comparative method. The American Naturalist, 125(1): 1–15.
/*ref*/Geist V. (1998) Deer of the World: Their Evolution, Behaviour, and Ecology. Mechanicsburg, PA: Stackpole Books. 421 p.
/*ref*/Gohli J. & Voje K.L. (2016) An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolutionary Biology, 16(222). DOI: 10.1186/s12862-016-0778-x
/*ref*/Hassanin A., Delsuc F., Ropiquet A., Hammer C., Jansen van Vuuren B., Matthee C., Ruiz-Garcia M., Catzeflis F., Areskoug V., Nguyen T.T. & Couloux A. (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biology, 335(1): 32–50. DOI: 10.1016/j.crvi.2011.11.002
/*ref*/Huang S., Drake J.M., Gittleman J.L. & Altizer S. (2015) Parasite diversity declines with host evolutionary distinctiveness: A global analysis of carnivores. Evolution, 69: 621–630. DOI: 10.1111/evo.12611
/*ref*/Isaac J.L. (2005) Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Review, 35: 101–115. DOI: 10.1111/j.1365-2907.2005.00045.x
/*ref*/Jarman P. (1983) Mating system and sexual dimorphism in large, terrestrial, mammalian herbivores. Biological Review, 58: 485–520. DOI: 10.1111/j.1469-185X.1983.tb00398.x
/*ref*/Kappeler P.M. & van Schaik C.P. (2004) Sexual Selection in Primates New and Comparative Perspectives. Cambridge: Cambridge University Press. 300 p.
/*ref*/Lindenfors P., Gittleman J.L. & Jones K.E. (2007) Sexual size dimorphism in mammals (p. 16–26). In: Fairbairn D.J., Blanckenhorn W.U. & Székely T. (Eds). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press. 280 p.
/*ref*/Martinez P. & Bidau C. (2016) A re-assessment of Rensch’s rule in tuco-tuco (Rodentia: Ctenomydae: Ctenomys) using a phylogentic approach. Mammalian Biology, 81(1): 66–72. DOI: 10.1016/j.mambio.2014.11.008
/*ref*/Martínez P.A., Amado T.F. & Bidau C.J. (2014) A phylogenetic approach to the study of sexual size dimorphism in Felidae and an assessment of Rensch’s rule. Ecosistemas, 23: 27–36. DOI: 10.7818/ECOS.2014.23-1.05
/*ref*/Martinez P.A., Marti D.A., Molina W.F. & Bidau C.J. (2013) Bergmann rule across the Equator: a case study in Cerdocyon thous. Journal of Animal Ecology, 82(5): 997–1008. DOI: 10.1111/1365-2656.12076
/*ref*/Martinez P.A., Pia M.V., Behachar I.A., Molina W.F. & Montoya-Burgos J.I. (2018) The contribution of neutral evolution and adaptive processes in driving phenotipic divergence in a model mammalian species, the Andean fox Lycalopex culpaeus. Journal of Biogeography, 45(5): 1114–1125. DOI: 10.1111/jbi.13189
/*ref*/Martinez P.A., Zurano J.P., Amado T.F., Penone C., Betancur-R R., Bidau C.J. & Jacobina U.P. (2015) Chromosomal diversity in tropical reef fishes is related to body size and depth range. Molecular Phylogenetics and Evolution, 93: 1–4. DOI: 10.1016/j.ympev.2015.07.002
/*ref*/McPherson F.J. & Chenoweth P.J. (2012) Mammalian sexual dimorphism. Animal Reproduction Science, 131: 109–22. DOI: 10.1016/j.anireprosci.2012.02.007
/*ref*/Miller C.W. (2013) Sexual Selection: Male-male Competition (p. 641–646). In: Losos J.B., Baum D.A., Futuyma D.J., Hoekstra H.E., Lenski R.E., Moore A.J., Peichel C.L., Schluter D. & Whitlock M.C. (Eds). The Princenton Guide of Evolution. Princenton: Princenton University Press. 853 p.
/*ref*/Moran S. & Poulin R. (1998) Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology, 12(6): 717–727. DOI: 10.1023/A:1006537600093 Nowak R.M. (1999) Walker's Mammals of the World. Baltimore: John Hopkins University Press. 1936 p.
/*ref*/Olalla-Tárraga M.A., Torres-Romero E.J., Amado T.F. & Martinez P.A. (2015) Phylogenetic path analysis reveals the importance of niche-related biological traits on geographic range size in mammals. Global Change Biology, 21: 3194–3196. DOI: 10.1111/gcb.12971
/*ref*/Payne J. & Francis C. (1985) A Field Guide to the Mammals of Borneo. Malaysia: Sabah Society. 332 p.
/*ref*/Pérez-Barbería F.J., Gordon I.J. & Pagel M. (2002) The origins of sexual dimorphism in body size in ungulates. Evolution, 56: 1276–1285. DOI: 10.1111/j.0014-3820.2002.tb01438.x
/*ref*/Peters R.H. (1983) The Ecological Implications of Body Size. New York: Cambridge University Press. 329 p.
/*ref*/Piross I.S., Harnos A. & Rózsa L. (2019) Rensch’s rule in avian lice: contradictory allometric trends for sexual size dimorphism. Scientific Reports, 9: 7908. DOI: 10.1038/s41598-019-44370-5
/*ref*/Plard F., Bonenfant C. & Gaillard J.M. (2011) Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos, 120(4): 601–606. DOI: 10.1111/j.1600-0706.2010.18934.x
/*ref*/Rangel T.F., Colwell R.K., Graves G.R., Fucikova K., Rahbek C. & Diniz-Filho J.A.F. (2015) Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution, 69: 1301–1312. DOI: 10.1111/evo.12644
/*ref*/R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available in: http://www.R-project.org
/*ref*/Reiss M.J. (1989) The Allometry of Growth and Reproduction. Cambridge: Cambridge University Press. 200 p. DOI: https://doi.org/10.1017/CBO9780511608483
/*ref*/Rensch B. (1950) Die Abhangigkeit der relativen Sexualdifferenz von der Korpergrosse. Bonner Zoologische Beiträge, 1: 58–69.
/*ref*/Revell L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217–223. DOI: 10.1111/j.2041-210X.2011.00169.x
/*ref*/Smith F.A. & Lyons S.K. (2011) How big should a mammal be? A macroecological look at mammalian body size over space and time. Proceeding Royal Society B, 366: 2364–2378. DOI: 10.1098/rstb.2011.0067
/*ref*/Smith F.A. & Lyons S.K. (2013) Animal Body Size: Linking Pattern and Process Across Space, Time, and Taxonomic Group. Chicago: The University of Chicago Press. 280 p.
/*ref*/Sokal R.R. & Rohlf F.J. (1995) Biometry: The Principles and Practice of Statistics in Biological Research. 3° edition. New York: W.H. Freeman and Com. 887 p.
/*ref*/Stevens R.D. & Platt R.N. (2015) Patterns of secondary sexual size dimorphism in New World Myotis and a test of Rensch’s rule. Journal of Mammalogy, 96(6): 1128–1134. DOI: 10.1093/jmammal/gyv120 Stuart-Fox D.M. & Ord T.J. (2004) Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proceeding Royal Society B, 271: 2249–2255. DOI: DOI: 10.1098/rspb.2004.2802
/*ref*/Tobias J.A., Montgomerie R. & Lyon B.E. (2012) The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philosophical Transaction of Royal Society London, 367: 2274–2293. DOI: 10.1098/rstb.2011.0280
/*ref*/Wiles G.J., Buden D.W. & Worthington D.J. (1999) History of introduction, population status, and management of Philippine deer (Cervus mariannus) on Micronesian islands. Mammalia, 63(2): 193–215.
 
Rights Direitos autorais 2019 Autor e Revista mantêm os direitos da publicação
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library