Improvements of the Design Process in the Microwave Transistors Industry

Revista Facultad de Ingeniería

View Publication Info
 
 
Field Value
 
Title Improvements of the Design Process in the Microwave Transistors Industry
Mejoras del proceso de diseño en la industria de transistores de microondas
 
Creator Rafael-Valdivia, Guillermo
 
Subject circuits
microwave
power semiconductors
radio communication
transistors
circuitos
microondas
radiocomunicación
semiconductores de potencia
transistores
 
Description This paper presents a technique to improve the design process of microwave transistors based on two aspects: an improved design of experiment test (DOE), and an electro-thermal enhanced model (MET). The DOE test allowed us to center the design through variations in specific parameters, avoiding complex electromagnetic simulations of mutual coupling between the wires inside the transistor, which generally, in conventional CAD tools present a high computational cost. The electro-thermal model, enhanced by using the effective voltage approach, allowed us to predict not only the self-heating phenomena, but also the appropriate impedances for transistor´s maximum output power and maximum efficiency. In this way it was possible to select the operating conditions which can warrant low self-heating and the best trade-off between power, efficiency and linearity. The presented techniques are specifically important for the implementation of power amplifiers for the future wireless communication systems which must be designed to operate with broad band signals. The combination of our proposed techniques can allow the reduction of the design time and associated costs at industrial level. The improved design of experiment permitted to center the design of the transistor, making sure that the designer can get the best performances of the transistor. The thermal characterization allows to make sure that the microwave transistor operates below the maximum allowed temperature in a built power amplifier, which warrants the reliability of the system.
Este artículo presenta una técnica para mejorar el proceso de diseño industrial de transistores de microondas, basado en un diseño de experimentos mejorado (DOE) y un modelado electrotérmico (MET) expandido. El diseño de experimentos DOE permitió centrar el diseño a través de variaciones en parámetros específicos, para evitar complejas simulaciones electromagnéticas de acoplamiento mutuo entre los cables dentro del mismo transistor, que generalmente en herramientas CAD convencionales presentan un elevado costo computacional. El modelo electrotérmico mejorado utilizando la técnica de voltajes efectivos posibilitó predecir no solo el autocalentamiento, sino también las impedancias apropiadas para la máxima potencia de salida y la máxima eficiencia del transistor. De esta manera fue posible elegir las condiciones de operación que garantizaran un reducido autocalentamiento, así como las mejores condiciones de potencia, eficiencia y linealidad. Las técnicas presentadas son útiles para la implementación de amplificadores de potencia en los futuros sistemas de comunicación inalámbricos, ya que deben trabajar con potencias elevadas que producen autocalentamiento y con señales de gran ancho de banda. La combinación de ambas técnicas permite la reducción de diseño y tiempo de producción en el ámbito industrial. El diseño de experimento mejorado posibilitó centrar el diseño del transistor para asegurar la obtención de los mejores desempeños del transistor. La caracterización térmica facilitó que el transistor de microondas, implementado en un circuito impreso de potencia, funcionara por debajo de la temperatura máxima permitida, lo que garantiza su vida útil y, en consecuencia, la confiabilidad del sistema de transmisión completo.
 
Publisher Universidad Pedagógica y Tecnológica de Colombia
 
Date 2019-06-25
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
review
revisión
 
Format application/pdf
application/xml
 
Identifier https://revistas.uptc.edu.co/index.php/ingenieria/article/view/9784
10.19053/01211129.v28.n52.2019.9784
 
Source Revista Facultad de Ingeniería; Vol 28 No 52 (2019); 99-122
Revista Facultad de Ingeniería; Vol. 28 Núm. 52 (2019); 99-122
2357-5328
0121-1129
 
Language spa
 
Relation /*ref*/E. Lan et al., “High power density InGaP PHEMTs for 26 V operation,” in IEEE RFIC Symposium. Digest, Long Beach, CA, USA. 2005.
/*ref*/P. Moens, G. Van den Bosch, and M. Tack, “Hole Trapping and de-Trapping Effects in LDMOS Devices under Dynamic Stress,” in International Electron Devices Meeting. St Francisco, CA, USA. 2006. https://doi.org/10.1109/iedm.2006.346999.
/*ref*/J. Seto, Quiescent Current Control for the RF Integrated Circuit Device Family, 2004. Available at: https://www.nxp.com/docs/en/application-note/AN1987.pdf.
/*ref*/O. Tomblad, and C. Blair, “An Electrothermal BSIM Model for Large-Signal Operation of RF Power LDMOS Devices,” in IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, USA, 2002. https://doi.org/10.1109/mwsym.2002.1011766.
/*ref*/G. Rafael-Valdivia, and Z. Su, “Non-linear modeling for low and high power microwave transistors,” in 46th European Microwave Conference (EuMC), 2016. https://doi.org/10.1109/eumc.2016.7824476.
/*ref*/P. Poire, H. Simard, F. Ghannouch, and G. Brassard, “Optimization of the performances of MESFET based microwave amplifiers using Plackett-Burman design of experiment”, in IEEE Instrumentation and Measurement Technology Conference, Canada, May. 1997. https://doi.org/10.1109/imtc.1997.603934.
/*ref*/A.N. Chandorkar, S. Mande, and H. Iwai. “Estimation of process variation impact on DG-FinFET device performance using Plackett-Burman design of experiment method,” in 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, China, 2008. https://doi.org/10.1109/icsict.2008.4734510.
/*ref*/G. Rafael-Valdivia. “RF Power Amplifier design for wireless networks and data communication systems,” in MOMAG: 18º SBMO – Simpósio Brasileiro de Micro-ondas e Optoeletrônica; 13º CBMAG – Congresso brasileiro de eletromagnetismo. Instituto Nacional de Telecomunicações, Inatel, Santa Rita do Sapucaí Brasil. 2018.
/*ref*/G. Rafael, “Modelo compacto con capacidad de predicción de parámetros físicos para amplificadores de RF,” Revista Facultad de Ingeniería, vol. 28 (51), Apr. 2019. https://doi.org/10.19053/01211129.v28.n51.2019.9132.
/*ref*/Z. Mokhti, P. Tasker, and J. Lees. “Correlation analysis between a VNA-based passive load pull system and an oscilloscope-based active load pull system: A case study,” in 83rd ARFTG Microwave Measurement Conference, Tampa, FL, USA. 2014. https://doi.org/10.1109/arftg.2014.6899535.
/*ref*/M. Chetibi, M. Gares, M. Masmoudi, H. Maanane, J. Marcon, K. Mourgues, and P. Eudeline. “RF power LDMOSFET characterization and modeling for reliability issues: DC and RF performances,” in 26th International Conference on Microelectronics, Serbia & Montenegro, 2008. https://doi.org/10.1109/icmel.2008.4559250.
/*ref*/A. Huang, Z. Zhong, Y. Guo, and W. Wu, “A novel extrinsic parameter extraction method for the technology independent modeling of transistors,” in Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015. https://doi.org/10.1109/apmc.2015.7412946.
/*ref*/C. Cassan, and P. Gola, “A 3.5 GHz 25 W Silicon LDMOS RFIC power amplifier for Wimax application,” in IEEE International Microwave Symposium (IMS), Honolulu, Hawai, 2007. https://doi.org/10.1109/rfic.2007.380839.
/*ref*/D. Burdeaux, and W. Burger, “Intrinsic reliability of RF power LDMOS FETs,” in International Reliability Physics Symposium, 2011. https://doi.org/10.1109/irps.2011.5784514.
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/9784/8136
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/9784/8251
 
Coverage N.A.
N.A.
 
Rights http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library