Synthesis of an Anticorrosive Pigment by Thermal Treatment of Iron Oxides from Steel Industry Wastes

Revista Facultad de Ingeniería

View Publication Info
 
 
Field Value
 
Title Synthesis of an Anticorrosive Pigment by Thermal Treatment of Iron Oxides from Steel Industry Wastes
Síntesis de un pigmento anticorrosivo mediante el tratamiento térmico de los óxidos de hierro procedentes de residuos siderúrgicos
 
Creator Colpas-Ruiz, María Angélica
Gnecco-Molina, Camilo
Jiménez-Rodríguez, Gabriel Antonio
Pérez-Mendoza, José Andrés
Higuera-Cobos, Óscar Fabián
 
Subject anticorrosive pigment
hematite
iron oxides
steel industry waste
thermal treatment
X ray diffraction
difracción de rayos X
hematita
óxidos de hierro
pigmento anticorrosivo
residuo siderúrgico
tratamiento térmico
 
Description This work reports the obtaining of an anticorrosive pigment composed mainly of hematite (ɑ-Fe2O3) from a powder steel industry waste from rust scale of rebar steel. This residue is mainly composed of Fe2O3 (87.97 %), SiO2 (6.13 %), CaO (1.88 %), Al2O3 (1.30%) and MnO (0.77 %). The total iron oxide of the residue is constituted by the following crystalline phases: magnetite, maghemita, lepidocrocita, wüstite, goethite and hematite. The production of a pigment with a high content of hematite was possible thanks to the high content of precursor iron oxides, which were calcined at different temperatures (750-850 °C) and holding times (0.5-1.50 h). For characterizing the iron content chemically and to identify their iron oxides phases, it was used X-ray fluorescence (XRF) and X-ray diffraction (XRD). The results showed that the pigment with the highest amount of hematite (ɑ-Fe2O3) was obtained at a calcination temperature of 850 °C and a holding time of 1.00 h.
Este trabajo reporta la obtención de un pigmento anticorrosivo compuesto principalmente por hematita (ɑ-Fe2O3) a partir de un residuo siderúrgico en polvo proveniente de la cascarilla de óxido superficial de varillas de acero para refuerzo de concreto. Este residuo está compuesto principalmente por Fe2O3 (87.97 %), SiO2 (6.13 %), CaO (1.88 %), Al2O3 (1.30%) y MnO (0.77 %). El óxido de hierro total del residuo está constituido por las siguientes fases cristalinas: magnetita, wustita, lepidocrocita y hematita. La producción de un pigmento con alto contenido de hematita fue posible gracias al alto contenido de óxidos de hierro precursores, los cuales fueron calcinados a diferentes temperaturas (750-850 °C) y tiempos de sostenimiento (0.5-1.50 h). Para caracterizar químicamente el contenido de hierro e identificar sus fases en óxidos de hierro, se utilizaron las técnicas de fluorescencia de rayos X (XRF) y difracción de rayos X (XRD). Los resultados mostraron que el pigmento con mayor cantidad de hematita (ɑ-Fe2O3) se obtuvo a una temperatura de calcinación de 850 °C y un tiempo de sostenimiento de1.00 h.
 
Publisher Universidad Pedagógica y Tecnológica de Colombia
 
Date 2019-07-01
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
research
investigación
 
Format application/pdf
application/pdf
application/xml
 
Identifier https://revistas.uptc.edu.co/index.php/ingenieria/article/view/9653
10.19053/01211129.v28.n52.2019.9653
 
Source Revista Facultad de Ingeniería; Vol 28 No 52 (2019); 43-58
Revista Facultad de Ingeniería; Vol. 28 Núm. 52 (2019); 43-58
2357-5328
0121-1129
 
Language spa
eng
 
Relation /*ref*/Md. S. Quddus et al., “Synthesis and Characterization of Pigment Grade Red Iron Oxide from Mill Scale,” International Research Journal of Pure and Applied Chemistry, vol. 16 (4), pp. 1-9, Aug. 2018. https://doi.org/10.9734/IRJPAC/2018/42935.
/*ref*/R. M. Cornell, and U. Shewertmann, “Transformations,” in The Iron Oxides, 2nd ed. Weinheim, Germany: Wiley-VCH, Jul. 2003, pp. 365-409. https://doi.org/10.1002/3527602097.ch14.
/*ref*/R. Zboril, M. Mashlan, and D. Petridis, “Iron (III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications,” Chem. Mater., vol. 14 (3), pp. 969-982, Mar. 2002. https://doi.org/10.1021/cm0111074.
/*ref*/O. R. K. Montedo, F. M. Bertan, R. Piccoli, D. Hotza, and A. P. N. de Oliveira, “Obtenção de Pigmentos de Óxido de Ferro a partir de Resíduos Siderúrgicos,” in Proc. 48th Annu. Meeting. of the Brazilian Ceramic Society, Curitiba, Brazil, 2004. Available at: https://www.ipen.br/biblioteca/cd/cbc/2004/artigos/48cbc-4-23.pdf.
/*ref*/J. Balbuena, L. Sánchez, and M. Yusta-Cruz, “Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars,” Materials, vol. 12 (4), pp. 1-13, Feb. 2019. https://doi.org/10.3390/ma12040621.
/*ref*/R. Sugrañez, M. Yusta-Cruz, I. Marmol, J. Morales, and L. Sánchez, “Preparation of Sustainable Photocatalytic Materials through the Valorization of Industrial Wastes,” ChemSusChem, vol. 6 (12), pp. 2340-2347, Dec. 2013. https://doi.org/10.1002/cssc.201300449.
/*ref*/S. Aguaiza, and O. Aldás, “Formación de hematita a partir de desechos sólidos producidos en la extracción de oro, mediante tratamientos térmicos,” Revista EPN, vol. 33 (2), 157-160, 2014.
/*ref*/V. Della, J. A. Junkes, O. R. K. Montedo, A. P. N. Oliviera, C. R. Rambo, and D. Hotza, “Synthesis of Hematite from Steel Scrap to Produce Ceramic Pigments,” Am. Ceram. Soc. Bull., 86(5), 9101-1108, May. 2017.
/*ref*/C. Sikalidis, T. Zorba, K. Chrissafis, and K. M. Paraskevopoulos, “Iron Oxide Pigmenting Powders Produced by Thermal Treatment of Iron Solid Wastes from Steel Mill Pickling Lines,” J. Therm. Anal. Calorim. vol. 86 (2), pp. 411-415, Nov. 2006. https://doi.org/10.1007/s10973-005-7168-8.
/*ref*/H. Ovčačíková, “Possibilities of Recycling of Oiled Scale for Preparation of Pigments,” Acta Metall. Slovaca-Conf., vol. 14, pp. 90-97, Sep. 2014. https://doi.org/10.12776/amsc.v4i0.217.
/*ref*/M. A. Legodi, and D. De Waal, “The Preparation of Magnetite, Goethite, Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste,” Dyes and Pigments. vol. 74 (1), pp. 161-168, Apr. 2007. https://doi.org/10.1016/j.dyepig.2006.01.038.
/*ref*/E. Zitrou, J. Nikolaou, P. E. Tsakiridis, and G. D. Papadimitriou, “Atmospheric Corrosion of Steel Reinforcing Bars Produced by Various Manufacturing Processes,” Construction and Building Materials, vol. 21 (6), pp. 1161-1169, Jun. 2007. https://doi.org/10.1016/j.conbuildmat.2006.06.004.
/*ref*/L. Cuesta, “Óxidos de hierro en pinturas anticorrosivas,” Inpra Latina, 19(1), pp. 26-30, Feb. 2014.
/*ref*/H. S. A. Emira, N. A. Abdel-Khalek, and F. F. Abdel-Mohsen, “Protective Byproducts. Steelmaking Waste can be Converted to Anticorrosive Pigments,” Europ. Coatings Jnl., no. 10, pp. 40-46, Oct. 2007.
/*ref*/E. Darezereshki, “Nano-Particles by Direct Thermal-Decomposition of Maghemita,” Materials Letters, vol. 65 (4), pp. 642-645, Feb. 2011. https://doi.org/10.1016/j.matlet.2010.11.030.
/*ref*/K. Przepiera, and A. Przepiera, “Kinetics of Thermal Transformations of Precipitated Magnetite and Goethite,” J. Therm. Anal. Calorim., vol. 65 (2), pp. 497-503, Aug. 2001. https://doi.org/10.1023/A:1012441421955.
/*ref*/Y. Cudennec, and A. Lecerf, “Topotactic Transformations of Goethite and Lepidocrocite into Hematite and Maghemita,” Solid State Sciences, vol. 7 (5), pp. 520-529, May. 2005. https://doi.org/10.1016/j.solidstatesciences.2005.02.002.
/*ref*/K. Mori, T. Okada, Y. Takagi, Y. Takada, and T. Mizoguchi, “Oxidation and Disproportionation of Wüstite Studied by Mössbauer Spectroscopy,” Jpn. J. Appl. Phys., vol. 38 (2B), Feb.1999. https://doi.org/10.1143/JJAP.38.L189.
/*ref*/A. M. Olmedo, “Estudio de películas de óxidos de hierro crecidas y depositadas en diversos ambientes,” Ph. D Disertation, Univ. Buenos Aires, Buenos Aires, Argentina, 1990. Available at: http://hdl.handle.net/20.500.12110/tesis_n2320_Olmedo.
/*ref*/Y. M. Mos, A. C. Vermeulen, C. J. N. Buisman, and J. Weijma, “X-Ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration,” Geomicrobiology Journal, vol. 35 (6), pp. 511-517, Jul. 2018. https://doi.org/10.1080/01490451.2017.1401183.
/*ref*/P. Whitfield, “Laboratory X-Ray Powder Diffraction,” in U. Kolb, K. Shankland, L. Meshi, A. Avilov y W. David, Eds., Uniting Electron Crystallography and Powder Diffraction, Dordrecht, Países Bajos: Springer, 2012, pp. 53-65.
/*ref*/A. C. Da Silva et al., “Converting Fe-rich Magnetic Wastes into Active Photocatalysts for Environmental Remediation Processes,” Journal of Photochemistry and Photobiology A Chemistry, vol. 335, pp. 259-267, Feb. 2017. https://doi.org/10.1016/j.jphotochem.2016.11.025.g.
/*ref*/D. Jaramillo, “Desarrollo de un protocolo para la aplicación del método de Rietveld y del estándar interno en la caracterización de materiales cerámicos con contenido de amorfos,” Thesis, Univ. EAFIT, Medellín, Colombia, 2015. Available at: http://hdl.handle.net/10784/8531.
/*ref*/M. Morcillo, and B. Chico, Eds. La corrosión atmosférica del acero al carbono en ambientes costeros, España: Editorial CSIC, 2018.
/*ref*/J. Alcántara, D. De La Fuente, B. Chico, J. Simancas, I. Díaz, and M. Morcillo, “Marine Atmospheric Corrosion of Carbon Steel: A Review,” Materials, vol. 10 (4), pp. 1-67, Apr. 2017. https://doi.org/10.3390/ma10040406.
/*ref*/S. Díaz, A. Forero, and O. J. Restrepo, “Hematita especular como pigmento natural en pinturas industriales,” Prospectiva, vol. 8 (1), pp. 71-76, Jun. 2010.
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/9653/8015
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/9653/8017
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/9653/8248
 
Coverage N.A.
N.A.
 
Rights http://creativecommons.org/licenses/by/4.0
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library