Brane Topology

Publicaciones en Ciencias y Tecnología

View Publication Info
 
 
Field Value
 
Title Brane Topology
Topología de Branas
 
Creator Castillo, Edmundo
Díaz, Rafael
 
Description We construct for each pair of compact oriented manifolds Y and M the category H(MS(Y)) of homologies of Y-branes extended between D-branes embedded in M using transversal intersecttion in the sense of Chas and Sullivan. AMS Subjec-classification: 18D35, 18G35, 18G55, 57R90.
Para cada par de variedades compactas y orientadas Y y M construimos la categoría H(Ms(Y)) de homologías de Y-branas que se extienden entre D-branas embebidas en M usando intersección transversal al estilo de Chas y Sullivan. Clasificación AMS: 18D35, 18G35, 18G55, 57R90.
 
Publisher Universidad Centroccidental Lisandro Alvarado
 
Date 2007-12-30
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Research article
Artículo de investigación original
 
Format application/pdf
 
Identifier https://revistas.ucla.edu.ve/index.php/pcyt/article/view/1532
 
Source Publicaciones en Ciencias y Tecnología; Vol 1 No 2 (2007): July-December; 62-75
Publicaciones en Ciencias y Tecnología; Vol. 1 Núm. 2 (2007): Julio-Diciembre; 62-75
Publicaciones en Ciencias y Tecnología; v. 1 n. 2 (2007): Julio-Diciembre; 62-75
2477-9660
1856-8890
 
Language spa
 
Relation https://revistas.ucla.edu.ve/index.php/pcyt/article/view/1532/767
/*ref*/M. Atiyah, Topological quantum field theory, Inst. Hautes Et u des Sci. Publ. Math. 68 (1988) 1 75 186. J. Baez, J. Dolan, From finite set to Feynman diagrams, e n B. Engquist W. Schmid ( Ed s.), Mathematics Unlimited 2001 a n d Beyond , Springer, Berlín, 2001 , pp. 29- 50. J. C. Baez, J. Dolan, Categorification, en E. Getzler, M. Kapranov (Eds.), Higher category theory, Evanston, IL, 1997, Contemp. Mat h., vol. 230, Amer. Math. Soc., Provi d e n ce, RI, 1 998, pp. 1-36. H. Blandín , R. Díaz, On the combinatorics of hypergeometric functions, Adv. Stud. Contemp. Mat h. 14 (1) (2007) 153-160. H. Blandín , R. Díaz, Rational combinatorics, Adv. in Appl. Mat h. (2007), doi: 10.1016 f j .aam.2006.12.006. E. Castillo, R. Díaz , Homology and manifolds with corners, prepublicación, ar- X i v.math.GT /0611839. E. Castillo, R. Díaz, Homological matrices, en S. Paycha, B. Ur i be (Eds.), Geometr i c and Topological Methods for Quantum Field Theory , Contemp. Math. 432 , A m er. Mat h. Soc., Provide n ce, pp. 1 8 1 192, 2007. E. Castillo and R. Díaz, Homological q u a n tum field theory, prepubliación, ar Xiv.math.KT /0509532. E. Castillo, R. Díaz, Membrane Topology, Adv. Stud. Contemp. Math. 15 (1) (2007) 59-68. E. Castillo, R. Díaz, Rota-Baxter categories, prepublicación, arXiv:math/0612218. M. Chas, D. Sullivan, String Topology, prepublicación, arXiv.math.GT/9911159. J. Christensen, L. Crane, Causal sites as quantum geometry, J. Math. Phys. 46 (2005) 12250J. L. Crane, l. Frenkel, Four-dimensional topological quantum field theory, opf categories, and the canonical bases, J. Math. Phys. 35 (10) (1994) 5136-5154. L. Crane, D. Yetter, Examples of categorification, Gahiers Topologie Géom. Defférentielle Catég. 39 (1) (1998) 3-25. R. Díaz, E. Pariguan, Super, quantum and noncommutative species, prepublicación, arXiv: math.CT/0509674. M.G. Khovanov, A categorification of Jones polynomial, Duke Math. J. 143 (2) (1986) 288-348. T. Kimura, Topological Quantum Field Theory and Algebraic Structures, en Lecture Notes in Phys. 662, Springer, Berlín, 2005, pp. 255-287. T. Kimura, J. Stasheff, A. Voronov, On operads structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1) (1995) 1-25. E. Lupercio, B. Uribe, Topological Quantum Field Theories, en S. Paycha, B. Uribe (Eds.), Geome tric and Topological Methods for Quantum Field Theory, Contemp. Math. 432, Amer. Math. Soc., Providence, pp. 73-98, 2007. J. D. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc. 108 (1963) 275-292. J. D. Stasheff, Homotopy associativity ofH-spaces II, Trans. Amer. Math. Soc. 108 (1963) 293-312. D. Sullivan, Open and closed string theory interpreted in classical algebraic topology, en Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Notes 308, Cambridge Univ. Press, Cambridge, 2004, pp. 344-357. E. Witten, Non-commutative geometry and string field theory, Nuclear Phys. B 268 (1986) 253-294. E. Witten, B. Zwiebach, Algebraic structures and differential geometry in two-dimensional string theory, Nuclear Phys. B 377 (1992) 55-112. B. Zwiebach, Closed string field theory: quantum action and the BV master equation, Nuclear Phys. B 390 (1993) 33-152.
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library