Proximal point method for pointwise convergent sucessions of Bregman functions

Publicaciones en Ciencias y Tecnología

View Publication Info
 
 
Field Value
 
Title Proximal point method for pointwise convergent sucessions of Bregman functions
Método de punto proximal para sucesiones de funciones de Bregman convergentes puntualmente
 
Creator Hernández, Eibar
Quintana Carlone, Raquel Silvana
Quintana Carlone, Clavel María
 
Description A generalization of the classical proximal point method and the method of proximal point with Bregman distances is developed under conditions of convexity. Starting from an arbitrary punctually convergent sucession of Bregman functions, our method allows both the generalization to the classic cases that have been developed for a fixed Bregman function and the addition of properties that regulate the behavior of the succession of Bregman distances. Thus, a method that converges to the minimizer of the objective function is obtained.
Se desarrolla una generalización del método de punto proximal clásico y el método de punto proximal con distancias de Bregman bajo condiciones de convexidad.  Partiendo de una sucesión arbitraria de funciones de Bregman convergente puntualmente, el método propuesto permite generalizar los casos clásicos que han sido desarrollados para una función Bregman fija, considerando propiedades que regulan el comportamiento de la sucesión de distancias de Bregman. Como consecuencia, se obtiene un método que converge al minimizador de la función objetivo.
 
Publisher Universidad Centroccidental Lisandro Alvarado
 
Date 2018-06-30
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Research article
Artículo de investigación original
 
Format application/pdf
 
Identifier https://revistas.ucla.edu.ve/index.php/pcyt/article/view/1295
 
Source Publicaciones en Ciencias y Tecnología; Vol 12 No 1 (2018): January-June; 7-18
Publicaciones en Ciencias y Tecnología; Vol. 12 Núm. 1 (2018): Enero-Junio; 7-18
Publicaciones en Ciencias y Tecnología; v. 12 n. 1 (2018): Enero-Junio; 7-18
2477-9660
1856-8890
 
Language spa
 
Relation https://revistas.ucla.edu.ve/index.php/pcyt/article/view/1295/774
/*ref*/A. Auslender; M. Teboulle; S. Ben-Tiba. Interior proximal and multiplier methods based on second order homogeneous kernels. Mathematics of Operations Research, 3:645–668, 1999.
/*ref*/A. Iusem; M. Teboulle; B. Svaiter. Entropy-like proximal methods in convex programming. Mathematics of Operations Research, 4:790–814,1994.
/*ref*/J. Eckstein. Nonlinear proximal point algorithms using bregman functions with aplications to convex programming. Mathematics of Operations Resaerchs, 18:202–226, 1993.
/*ref*/J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc.Math, 93:97–116, 1976.
/*ref*/C. Lemarechal; Hiriart-Urruty. Convex analysis and minimization algorithm ii. Springer Verlag, 1996.
/*ref*/B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. Reue Francaise deInformatique et Recherche Operationelle, 2:154–159, 1970.
/*ref*/R.T. Rockafellar. Monotone operators and the proximal point algorithm in convex programming. SIAM J. on Control and Optimization, 14:877–898, 1976.
/*ref*/H. Attouch; R. West. Ephigraphical analysis. Ann. Ins. Poincaré: Anal. Nonlineair, 1989.
/*ref*/A. Iusem. Métodos de ponto proximal em optimização. 20 Coloquio Brasileiro de Matemática, 1995.
/*ref*/A. Iusem. Augmented lagrangian methods and proximal point methods for convex optimization. Investigacion Operativa, 8:11–50, 1997.
/*ref*/C. Humes; J. Eckstein; P.J. Silva. Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM Journal on Optimization, 12:238–261, 2001.
/*ref*/K. Kiwiel. Proximal minimizations methods with generalized bregman functions. SIAM J. on Control and Optimization, 35:1142–1168, 1997.
/*ref*/C. Gonzaga; R. Castillo. Penalidades generalizadas e métodos de lagrangeano aumentado para promamacao nao linear. Dsc. these, U.F.R.J., 1998.
/*ref*/E. Hernandez; J.Campos; R.A. Castillo. A generalized like distance in convex programming. International Mathematical Forum, 2:1811–1830, 2007.
/*ref*/C. Gonzaga; E. Karas; L. Matioli; R. Castillo. An unified approach to multiplier and proximal methods. Technical Report. Universidad Federal de Santa Catarina Brasil, 2012.
/*ref*/C. Quintana. Un estudio sobre métodos de multiplicadores y métodos de punto proximal. Tesis Doctoral, 2016.
/*ref*/A. Larreal; E. Hernández. Método de punto proximal para sucesiones convergentes de funciones de Bregman caso convexo. Trabajo de grado de Maestría, Universidad Centroccidental Lisandro Alvarado, Venezuela, 2014.
/*ref*/R. Quintana. Un estudio sobre los métodos de punto proximal para familia de funciones de bregman dependientes de parámetros vectoriales. Tesis Doctoral, Universidad Centroccidental Lisandro Alvarado, Venezuela, 2018.
/*ref*/S. Pan; J. Chen. Entropy-like proximal algorithms based on a second-order homogeneous distance function for quasi-conex programming. Journal of Global Optimization, 39:555–575, 2007.
 

Contact Us

The PKP Index is an initiative of the Public Knowledge Project.

For PKP Publishing Services please use the PKP|PS contact form.

For support with PKP software we encourage users to consult our wiki for documentation and search our support forums.

For any other correspondence feel free to contact us using the PKP contact form.

Find Us

Twitter

Copyright © 2015-2018 Simon Fraser University Library